Basics of Category \mathcal{O}

Jianqiao Xia

February 13, 2020

1 Introduction

This lecture is a dijest of chapter 1-3 of book [1]. We fix a complex semisimple lie algebra \mathfrak{g} , and a borel subalgebra \mathfrak{b} , with nilpotent radical \mathfrak{n} . So we have $\mathfrak{g} = \mathfrak{n}^{-1} \oplus \mathfrak{h} \oplus \mathfrak{n}$. Let $U(\mathfrak{g})$ be the universal enveloping algebra. By Poincaré-Birkoff-Witt (PBW), we have $U(\mathfrak{g}) = U(\mathfrak{n}^{-1})U(\mathfrak{h})U(\mathfrak{n})$. The category of $U(\mathfrak{g})$ modules is denoted \mathfrak{g} -mod, and the subcategory of finite dimension modules \mathfrak{g} -mod f.d. And the category of weight modules is denoted \mathfrak{g} -mod f.s.s. (for \mathfrak{h} -semisimple). If in addition the each weight space has finite dimension, the subcategory is denoted \mathfrak{g} -mod f.s.s.,f.d.

Before defining the Berstein-Gelfand-Gelfand (BGG) category \mathcal{O} , we mention that is contains finite dimensional modules and highest weight modules (which contains Verma modules $M(\lambda)$). Each $M(\lambda)$ has a unique simple quotient called $L(\lambda)$. They are all the simple objects of \mathcal{O} .

Unlike \mathfrak{g} -mod^{f.d.} which is semisimple by Weyl Reducibility Theorem, \mathcal{O} is not semisimple. In such cases, we introduce the notion of *blocks*. We have decomposition

$$\mathcal{O} = \bigoplus_{\chi \in \text{Spec}(Z(\mathfrak{g}))} \mathcal{O}_{\chi}. \tag{1}$$

Here $\operatorname{Spec} Z(\mathfrak{g})$ is just a pretentious way to write characters $Z(\mathfrak{g}) \to \mathbb{C}$, where $Z(\mathfrak{g})$ is the center of $U(\mathfrak{g})$. We have an explicit description of $Z(\mathfrak{g})$ due to the Harish-Chandra isomorphism: $\xi: Z(\mathfrak{g}) \xrightarrow{\sim} U(\mathfrak{h})^W$. \mathcal{O}_{χ} is sometimes called blocks.

Another decomposition result holds for projectives. The category \mathcal{O} has enough projectives (and injectives). For each $\lambda \in \mathfrak{h}^*$, we associate one indecomposible projective $P(\lambda) \twoheadrightarrow L(\lambda)$. It turns out that any projective module is a direct sum of some $P(\lambda)$.

Filtration is yet another way to approximate a decomposition. For an object $M \in \mathcal{O}$, we have a finite length filtration $0 \subset M_1 \subset M_2 \cdots \subset M_n = M$, such that each $M_i/M_{i-1} \cong L(\lambda)$ for some λ . The multiplicity of $L(\lambda)$ is denoted $[M:L(\lambda)]$. We also have the notion of standard filtration (or Verma Flag), by requiring $M_i/M_{i-1} \cong M(\lambda)$ for some λ . The multiplicity of $M(\lambda)$ is denoted $(M:M(\lambda))$. Not all object in \mathcal{O} has standard filtration. For example, $L(\lambda)$ usually don't have standard filtration.

One reason we consider standard filtration is that $M(\lambda)$ also form a basis of $K(\mathcal{O})$. In fact, we have $[M(\lambda)] = [L(\lambda)] + \sum_{\mu \leq \lambda} a(\lambda, \mu)[L(\mu)]$, where $a(\lambda, \mu) = [M(\lambda) : L(\mu)]$. So the change of basis is an "upper triangular" matrix, with diagonals all 1. The inverse relations can be written as $[L(\lambda)] = [M(\lambda)] + \sum_{\mu \leq \lambda} b(\lambda, \mu)[M(\lambda)]$. The coefficient $b(\lambda, \mu)$ is determined by Kazhdan-Lusztig conjecture.

Finally we have the fundamental result BGG reciprocity:

$$(P(\lambda), M(\mu)) = [M(\mu), L(\lambda)]. \tag{2}$$

2 Modules in Category \mathcal{O}

2.1 Definition of \mathcal{O}

Now we define the category \mathcal{O} as a full subcategory of \mathfrak{g} -mod with objects M satisfying:

- 1. M is finitely generated;
- 2. M is a weight module, in other words it has a decomposition $M = \bigoplus_{\lambda \in h^*} M_{\lambda}$.
- 3. M is locally $\mathfrak n$ finite: for each $v \in M$, the vector space $U(\mathfrak n)v$ is finite dimensional.

There are several direct consequences of the axiom:

- (P1) \mathcal{O} is noetherian and abelian;
- (P2) For each $M \in \mathcal{O}$, the set of weights appeared is contained in $\bigsqcup_{\lambda inI} \lambda \Gamma$, where I is finite and Γ is the semigroup generated by positive roots (Φ^+) .

Proof. Let V be the span of weight vector generators. Then $\dim V < \infty$. Consider $W = U(\mathfrak{b}) \cdot V$ and use PBW.

(P3) If $L \in \mathfrak{g}\text{-mod}^{f.d.}$, and $M \in \mathcal{O}$, then $L \otimes M \in \mathcal{O}$. Furthermore, the functor $\mathcal{O} \to \mathcal{O} : M \mapsto L \otimes M$ is exact.

Proof. Suppose L has basis weight vectors v_1, \dots, v_n , and M is generated by weight vectors m_1, \dots, m_l , then we claim that $v_i \otimes m_j$ are weight vector generators of $L \otimes M$. In fact, let N be the module they generate. Then clearly $v \otimes m_i \in N$. Now if $x \in U(\mathfrak{g})$, we have $x(v \otimes m_j) = (xv) \otimes m_j + v \otimes (xm_j)$. So $v \otimes (xm_j) \in N$.

(P4) L is locally $Z(\mathfrak{g})$ finite.

2.2 Highest Weight Modules and Verma Modules

Let $M \in \mathfrak{g}$ -mod, we say $v \in M$ is a maximal vector if it is a weight vector and $\mathfrak{n} \cdot v = 0$. By assumption each object in \mathcal{O} has a maximal vector. If $M = U(\mathfrak{g}) \cdot v$ for a maximal vector v, with weight λ , then we say that M is a highest weight module of weight λ .

Proposition 2.1. If M is a highest weight module, then it has a unique maximal submodule and a unique simple quotient.

For a weight $\lambda \in \mathfrak{h}^*$, we have the action of \mathfrak{b} given by $\mathfrak{b} \to \mathfrak{h} \to \mathbb{C}$. Let \mathbb{C}_{λ} denote the one dimensional $U(\mathfrak{b})$ module. We define the Verma module $V(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$. By the above above proposition, we write $N(\lambda)$ as the maximal submodule of $M(\lambda)$, and $L(\lambda)$ the unique simple quotient.

Proposition 2.2. dim Hom_O $(L(\lambda), L(\mu)) = \delta_{\lambda\mu}$.

Proposition 2.3. $M(\lambda)$ is universal among highest weight modules of weight λ , and $L(\lambda)$ are all the simple objects of M.

Example 2.1. Consider $\mathfrak{sl}(2,\mathbb{C})$. $M(\lambda) = \bigoplus_{i \in \mathbb{N}} \mathbb{C}v_i$, where $hv_i = (\lambda - 2i)v_i$, $xv_i = (\lambda - i + 1)v_{i-1}$, $yv_i = (i+1)v_i$.

Proposition 2.4. $L(\lambda)$ is finite dimensional if and only if $\lambda \in \Lambda^+$. In such a case, dim $L(\lambda)_{\mu} = \dim L(\lambda)_{w\mu}$ for $w \in W$, the Weyl group.

Proposition 2.5. If α is a simple root, and $n = \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z}^+$, then $M(\lambda)$ has a maximal vector $v' = y_i^{n+1}v$, with weight $\mu = \lambda - (n+1)\alpha$.

Proof. Calculate
$$[x_i, y_i^{n+1}] = -(n+1)y_i^n(n-h_i)$$
.

Now consider the action $s_{\alpha}\lambda = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$. We define the shifted action (or dot action) $s_{\alpha}\lambda = \lambda - (n+1)\alpha = \lambda - \langle \lambda + \rho, \alpha^{\vee} \rangle \alpha$. In other words, $w \cdot \lambda := w(\lambda + \rho) - \rho$. We say that μ is linked to λ if there is a $w \in W$ such that $\mu = w \cdot \lambda$. We say that λ is dominant if there is no $\mu \leq \lambda$ that is also linked to λ . We have a similar notion of antidominance. Note that this dominance is different from the usual one. In particular, $\lambda \in \Lambda^+ - \rho$ is dominant.

It turns out that any linkage class has a unique dominant and a unique antidominant weight, and we have

Proposition 2.6. $M(\lambda) = L(\lambda)$ if λ is antidominant. $M(\lambda) (= P(\lambda))$ is projective if λ is dominant.

3 Decomposition with respect to the action of center

Recall that $Z(\mathfrak{g})$ is the center of $U(\mathfrak{g})$. Let $z \in Z(\mathfrak{g})$, and $v \in M(\lambda)$ is the highest weight vector. Then $M_{\lambda} = \mathbb{C}v$. We have $h(zv) = z(hv) = \lambda(h)zv$. So $zv \in M_{\lambda}$, and therefore there exists $\chi_{\lambda}(z) \in \mathbb{C}$ such that $zv = \chi_{\lambda}(z)v$. Now we have obtained a character $\chi_{\lambda} : Z(\mathfrak{g}) \to \mathbb{C}$.

The character χ_{λ} can be described explicitly. Let $\operatorname{pr}: U(\mathfrak{g}) \to U(\mathfrak{h})$ be the projection to $U(\mathfrak{h})$ by sending $x_i, y_i \mapsto 0$. λ extends to an algebra map $U(\mathfrak{h}) \to \mathbb{C}$, we have $\chi = \lambda \circ \operatorname{pr}$.

Although pr is not an algebra map, its restriction to $Z(\mathfrak{g}) \xi : Z(\mathfrak{g}) \to U(\mathfrak{h})$ is indeed a homomorphism, because $\bigcap_{\lambda \in \mathfrak{h}^*} \operatorname{Ker} \lambda = 0$.

Notice that we have nonzero map $M(w \cdot \lambda) \to M(\lambda)$, if $w \cdot \lambda \leq \lambda$. Using a density argument we have

Proposition 3.1. The image of map ξ is contained in $U(\mathfrak{h})^W$.

Theorem 3.1. (Harish-Chandra) The map $\chi: Z(\mathfrak{g}) \to U(\mathfrak{h})^W$ is an isomorphism.

We can use Harish-Chandra isomorphism to prove the following fact:

Proposition 3.2. \mathcal{O} is Artinian. Moreover, if $M, N \in \mathcal{O}$, then dim $\operatorname{Hom}_{\mathcal{O}}(M, N) < \infty$.

Proof. Notice that each $M \in \mathcal{O}$ has a filtration with successive quotients isomorphic to some highest weight module. Therefore it suffice to show that $M(\lambda)$ is artinian. Let $V = \sum_{w \in W} M(\lambda)_{w \cdot \lambda}$. If $N \supset N'$ are submodules of M, then $Z(\mathfrak{g})$ acts on N/N' with character χ_{λ} . So N/N' contains a maximal vector with weight μ such that $\chi_{\mu} = \chi_{\lambda}$. Therefore $\dim(N \cap V) > \dim(N' \cap V)$. \square

For $M \in \mathcal{O}$, define

$$M^{\chi} = \{ v \in M | \text{there exists } n \text{ depending on } z \text{ such that } (z - \chi(z))^n v = 0, \text{ for all } z \in Z(\mathfrak{g}) \}.$$
(3)

Then it is clear that $M = \bigoplus_{\chi} M^{\chi}$. Let \mathcal{O}_{χ} be the subcategory with objects $M = M^{\chi}$. Therefore we have

Proposition 3.3. $\mathcal{O} = \bigoplus_{\chi} \mathcal{O}_{\chi}$.

A brief explanation of blocks. If A, B are simple objects, and has non-split extension, $0 \rightarrow$ $A \to M \to B \to 0$, we put A, B in a same block. If there is a sequence of simple objects $A = A_0, A_1, \dots, A_n = B$, such that each adjacent pair is in the same block, then we put A, Bin the same block. If all the simple factors of M is in the same block, we put M in that block too. It turns out \mathcal{O}_{χ} is a block if $\chi = \chi_{\lambda}$, and $\lambda \in \Lambda$. If $\chi \in \mathfrak{h}^*$, then it is possible that $\mathcal{O}_{\chi_{\lambda}}$ can be decomposed into abelian subcategories.

4 Characters

Recall that if M is a finite dimensional module, we define ch M as an element in the group ring $\mathbb{Z}\Lambda$: ch $M = \sum_{\lambda} \dim(M_{\lambda}) e(\lambda)$. Here $e(\lambda)$ represents a generator in $\mathbb{Z}\Lambda$. We have $e(\lambda) e(\mu) = 0$ $e(\lambda + \mu)$.

For \mathcal{O} , or more generally $\mathfrak{g}\text{-mod}^{\mathfrak{h}-s.s.,f.d.}$, we define ch M as a function $f:\mathfrak{h}^*\to\mathbb{Z}$, with $f(\lambda) = \dim M_{\lambda}$. Then the product now becomes convolution. In fact, we have characteristic function $e(\lambda)$, which values 1 on λ and 0 else where. Intuitively, we think of $e(\lambda)$ as exponentials and f as a fourier-transform $\sum_{\lambda} f(\lambda)e(\lambda)$.

Proposition 4.1. ch $(L \otimes N) = \text{ch } L * \text{ch } N$, if $L \in \mathfrak{g}\text{-mod}^{f.d.}$. If we have short exact sequence $0 \to M' \to M \to M'' \to 0$, then ch $M = \operatorname{ch} M' + \operatorname{ch} M''$.

The character of Verma modules are simple, and they are described using a single function p. $p(\gamma)$ is defined by the number of solutions to $\gamma = -\sum_{\gamma_{\alpha}} \alpha$.

Proposition 4.2. ch M(0) = p, ch $M(\lambda) = e(\lambda) * p$.

The character of $L(\lambda)$ is much more complicated. By section 2, 3, we can write ch $M(\lambda)$ $\sum a(\lambda,\mu) \operatorname{ch} L(\mu)$, where $\mu \leq \lambda$ and μ linked to λ . $a(\lambda,\lambda) = 1$. Inverting these relations we have

$$\operatorname{ch} L(\lambda) = \sum_{w \in W, w \cdot \lambda \le \lambda} b(\lambda, w) \operatorname{ch} M(w \cdot \lambda). \tag{4}$$

The coefficients $b(\lambda, w)$ is in general difficult to compute, and is given by Kazhan-Lusztig. Now we compute $b(\lambda, w)$ for $\lambda \in \Lambda^+$, which is equivalent to the Weyl character formula.

Theorem 4.1. For $\lambda \in \Lambda^+$, the coefficient $b(\lambda, w) = (-1)^{l(w)}$, where l(w) is the length.

Before proving the theorem, we rewrite p. Let $f_{\alpha}(\lambda) = \sum_{k \in \mathbb{N}} e(\lambda - k\alpha)$. Then we have identities

$$p = \prod_{\alpha > 0} f_{\alpha} \tag{5}$$

$$p = \prod_{\alpha>0} f_{\alpha}$$

$$(e(0) - e(-\alpha)) * f_{\alpha} = e(0).$$

$$(5)$$

The key to the proof is to introduce the Weyl denominator $q:=\prod_{\alpha>0}(e(\alpha/2)-e(-\alpha/2))$. Then we have

$$q * \operatorname{ch} M(\lambda) = e(\lambda + \rho).$$
 (7)

Proof. of Theorem 4.1

We have:

$$q * \operatorname{ch} L(\lambda) = \sum_{w \in W} b(\lambda, w) e(w(\lambda + \rho)).$$
 (8)

Note the $w \cdot \lambda \leq \lambda$ for all $w \in W$ in this case. Consider the action of s_{α} , q is changed to -q, and we already know from Proposition 2.4 that ch $L(\lambda)$ is invariant under W. So we have $b(\lambda, w) = -b(\lambda, s_{\alpha}w)$. Since $b(\lambda, \lambda) = 1$, we have $b(\lambda, w) = (-1)^{l(w)}$. The above result suggests to write ch $L(\lambda)$ as a Euler characteristic. In other words, there is a BGG resolution:

$$\cdots \to \bigoplus_{w \in W, l(w) = k} M(w \cdot \lambda) \to \cdots \to M(\lambda) \to L(\lambda) \to 0.$$
 (9)

5 Projectives and BGG Reciprocity

We first remark that $\operatorname{Ext}_{\mathcal{O}} \neq \operatorname{Ext}_{U(\mathfrak{g})}$. To define the derived functor of Hom we need enough projectives. We have mentioned that $M(\lambda)$ is projective if λ is dominant. To get more projectives, we use the following observation:

Proposition 5.1. If P is projective, and L finite dimensional, then $P \otimes L$ is projective.

Proof. We have $\operatorname{Hom}(P \otimes L, M) = \operatorname{Hom}(P, L^* \otimes M)$. This is compatible with $U(\mathfrak{g})$ structure. \square

Proposition 5.2. If $M \in \mathfrak{g}\text{-mod}^{f.d.}$, then $M(\lambda) \otimes M$ has standard filtration with successive quotients $M(\lambda + \mu)$, with $(M(\lambda) \otimes M : M(\lambda + \mu)) = \dim M_{\mu}$.

Proof. Use the tensor identity

$$(U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} L) \otimes M \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} (L \otimes M). \tag{10}$$

Take $L = \mathbb{C}_{\lambda}$, and use (P3) of section 2.

This proposition has two immediate consequences.

Proposition 5.3. \mathcal{O} has enough projectives (and injectives).

Proof. For
$$L(\lambda)$$
, consider $M(\lambda + n\rho) \otimes L(n\rho)$.

Therefore we can associate each $L(\lambda)$ a projective $P(\lambda) \to L(\lambda)$. If in addition we require $P(\lambda)$ is essential (it has no proper submodule maps onto $L(\lambda)$), the it is uniquely determined. Clearly $P(\lambda)$ is indecomposible. Moreover, using just the universal properties of $P(\lambda)$, we have

Proposition 5.4. Any projective in \mathcal{O} is a direct sum of $P(\lambda)$.

Proposition 5.5. $P(\lambda)$ has standard filtration.

Proof. By proposition 5.2, we can embed $P(\lambda)$ as a direct summand of $M(\lambda + n\rho) \otimes L(n\rho)$ for large ρ .

We are ready to prove the following fundamental result.

Theorem 5.1. BGG Reciprocity.

$$(P(\lambda): M(\mu)) = [M(\mu), L(\lambda)] = [M(\mu)^{\vee}, L(\lambda)]. \tag{11}$$

Proof. The key is to identify both sides as dim $\operatorname{Hom}_{\mathcal{O}}(P(\lambda), M(\mu)^{\vee})$.

Lemma 1. If M has standard filtration, then

$$\dim \operatorname{Hom}_{\mathcal{O}}(M, M(\mu)^{\vee}) = (M : M(\mu)). \tag{12}$$

Proof. Use induction on the length of M. Use $\operatorname{Ext}(M(\mu), M(\lambda)^{\vee}) = 0$, $\dim \operatorname{Hom}_{\mathcal{O}}(M(\mu), M(\lambda)^{\vee}) = \delta_{\lambda\mu}$. A map $M(\lambda) \to M(\lambda)^{\vee}$ is given by $M(\lambda) \twoheadrightarrow L(\lambda) \cong L^{\vee} \hookrightarrow M(\lambda)^{\vee}$.

Lemma 2. For any $M \in \mathcal{O}$, dim $\operatorname{Hom}_{\mathcal{O}}(P(\lambda), M) = [M : L(\lambda)]$.

Proof. Again use induction on the induction on the length, except we use the usual filtration of M.

References

- [1] James E. Humphrey: Representations of Semisimple Lie Algebra in the BGG Category $\mathcal{O}.$ 2008
- $[2]\,$ Dennis Gaitsgory: Lecture notes on Geometric Represenation Theory. Fall 2005.