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1 Introduction

This lecture is a dijest of chapter 1-3 of book [1]. We fix a complex semisimple lie algebra g, and a
borel subalgebra b, with nilpotent radical n. So we have g = n−1⊕h⊕n. Let U(g) be the universal
enveloping algebra. By Poincaré-Birkoff-Witt (PBW), we have U(g) = U(n−1)U(h)U(n). The
category of U(g) modules is denoted g-mod, and the subcategory of finite dimension modules
g-modf.d.. And the category of weight modules is denoted g-modh−s.s. (for h-semisimple). If in
addition the each weight space has finite dimension, the subcategory is denoted g-modh−s.s.,f.d..

Before defining the Berstein-Gelfand-Gelfand (BGG) category O, we mention that is con-
tains finite dimensional modules and highest weight modules (which contains Verma modules
M(λ)). Each M(λ) has a unique simple quotient called L(λ). They are all the simple objects
of O.

Unlike g-modf.d. which is semisimple by Weyl Reducibility Theorem, O is not semisimple.
In such cases, we introduce the notion of blocks. We have decomposition

O =
⊕

χ∈Spec(Z(g))

Oχ. (1)

Here SpecZ(g) is just a pretentious way to write characters Z(g)→ C, where Z(g) is the center
of U(g). We have an explicit description of Z(g) due to the Harish-Chandra isomorphism:
ξ : Z(g)

∼−→ U(h)W . Oχ is sometimes called blocks.
Another decomposition result holds for projectives. The category O has enough projectives

(and injectives). For each λ ∈ h∗, we associate one indecomposible projective P (λ) � L(λ). It
turns out that any projective module is a direct sum of some P (λ).

Filtration is yet another way to approximate a decomposition. For an object M ∈ O, we
have a finite length filtration 0 ⊂M1 ⊂M2 · · · ⊂Mn = M , such that each Mi/Mi−1 ∼= L(λ) for
some λ. The multiplicity of L(λ) is denoted [M : L(λ)]. We also have the notion of standard
filtration (or Verma Flag), by requiring Mi/Mi−1 ∼= M(λ) for some λ. The multiplicity of M(λ)
is denoted (M : M(λ)). Not all object in O has standard filtration. For example, L(λ) usually
don’t have standard filtration.

One reason we consider standard filtration is that M(λ) also form a basis of K(O). In
fact, we have [M(λ)] = [L(λ)] +

∑
µ≤λ a(λ, µ)[L(µ)], where a(λ, µ) = [M(λ) : L(µ)]. So the

change of basis is an “upper triangular” matrix, with diagonals all 1. The inverse relations can
be written as [L(λ)] = [M(λ)] +

∑
µ≤λ b(λ, µ)[M(λ)]. The coefficient b(λ, µ) is determined by

Kazhdan-Lusztig conjecture.
Finally we have the fundamental result BGG reciprocity:

(P (λ),M(µ)) = [M(µ), L(λ)]. (2)
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2 Modules in Category O

2.1 Definition of O

Now we define the category O as a full subcategory of g-mod with objects M satisifying:

1. M is finitely generated;

2. M is a weight module, in other words it has a decomposition M =
⊕

λ∈h∗ Mλ.

3. M is locally n finite: for each v ∈M , the vector space U(n)v is finite dimensional.

There are several direct consequences of the axiom:

(P1) O is noetherian and abelian;

(P2) For each M ∈ O, the set of weights appeared is contained in
⊔
λinI λ−Γ, where I is finite

and Γ is the semigroup generated by positive roots (Φ+).

Proof. Let V be the span of weight vector generators. Then dimV < ∞. Consider
W = U(b) · V and use PBW.

(P3) If L ∈ g-modf.d., and M ∈ O, then L⊗M ∈ O. Furthermore, the functor O → O : M 7→
L⊗M is exact.

Proof. Suppose L has basis weight vectors v1, · · · , vn, and M is generated by weight
vectors m1, · · · ,ml, then we claim that vi⊗mj are weight vector generators of L⊗M . In
fact, let N be the module they generate. Then clearly v ⊗mi ∈ N . Now if x ∈ U(g), we
have x(v ⊗mj) = (xv)⊗mj + v ⊗ (xmj). So v ⊗ (xmj) ∈ N .

(P4) L is locally Z(g) finite.

2.2 Highest Weight Modules and Verma Modules

Let M ∈ g-mod, we say v ∈ M is a maximal vector if it is a weight vector and n · v = 0. By
assumption each object in O has a maximal vector. If M = U(g) · v for a maximal vector v,
with weight λ, then we say that M is a highest weight module of weight λ.

Proposition 2.1. If M is a highest weight module, then it has a unique maximal submodule
and a unique simple quotient.

For a weight λ ∈ h∗, we have the action of b given by b � h → C. Let Cλ denote the one
dimensional U(b) module. We define the Verma module V (λ) = U(g) ⊗U(b) Cλ. By the above
above proposition, we write N(λ) as the maximal submodule of M(λ), and L(λ) the unique
simple quotient.

Proposition 2.2. dim HomO(L(λ), L(µ)) = δλµ.

Proposition 2.3. M(λ) is universal among highest weight modules of weight λ, and L(λ) are
all the simple objects of M .

Example 2.1. Consider sl(2,C). M(λ) =
⊕

i∈NCvi, where hvi = (λ − 2i)vi, xvi = (λ − i +
1)vi−1, yvi = (i+ 1)vi.
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Proposition 2.4. L(λ) is finite dimensional if and only if λ ∈ Λ+. In such a case, dimL(λ)µ =
dimL(λ)wµ for w ∈W , the Weyl group.

Proposition 2.5. If α is a simple root, and n = 〈λ, α∨〉 ∈ Z+, then M(λ) has a maximal vector
v′ = yn+1

i v, with weight µ = λ− (n+ 1)α.

Proof. Calculate [xi, y
n+1
i ] = −(n+ 1)yni (n− hi).

Now consider the action sαλ = λ − 〈λ, α∨〉α. We define the shifted action (or dot action)
sαλ = λ− (n+ 1)α = λ− 〈λ+ ρ, α∨〉α. In other words, w · λ := w(λ+ ρ)− ρ. We say that µ
is linked to λ if there is a w ∈ W such that µ = w · λ. We say that λ is dominant if there is
no µ ≤ λ that is also linked to λ. We have a similar notion of antidominance. Note that this
dominance is different from the usual one. In particular, λ ∈ Λ+ − ρ is dominant.

It turns out that any linkage class has a unique dominant and a unique antidominant weight,
and we have

Proposition 2.6. M(λ) = L(λ) if λ is antidominant. M(λ)(= P (λ)) is projective if λ is
dominant.

3 Decomposition with respect to the action of center

Recall that Z(g) is the center of U(g). Let z ∈ Z(g), and v ∈M(λ) is the highest weight vector.
Then Mλ = Cv. We have h(zv) = z(hv) = λ(h)zv. So zv ∈ Mλ, and therefore there exists
χλ(z) ∈ C such that zv = χλ(z)v. Now we have obtained a character χλ : Z(g)→ C.

The character χλ can be described explicitly. Let pr : U(g) → U(h) be the projection to
U(h) by sending xi, yi 7→ 0. λ extends to an algebra map U(h)→ C, we have χ = λ ◦ pr.

Although pr is not an algebra map, its restriction to Z(g) ξ : Z(g) → U(h) is indeed a
homomorphism, because

⋂
λ∈h∗ Kerλ = 0.

Notice that we have nonzero map M(w ·λ)→M(λ), if w ·λ ≤ λ. Using a density argument
we have

Proposition 3.1. The image of map ξ is contained in U(h)W .

Theorem 3.1. (Harish-Chandra) The map χ : Z(g)→ U(h)W is an isomorphism.

We can use Harish-Chandra isomorphism to prove the following fact:

Proposition 3.2. O is Artinian. Moreover, if M,N ∈ O, then dim HomO(M,N) <∞.

Proof. Notice that each M ∈ O has a filtration with successive quotients isomorphic to some
highest weight module. Therefore it suffice to show thatM(λ) is artinian. Let V =

∑
w∈W M(λ)w·λ.

If N ⊃ N ′ are submodules of M , then Z(g) acts on N/N ′ with character χλ. So N/N ′ contains
a maximal vector with weight µ such that χµ = χλ. Therefore dim(N ∩ V ) > dim(N ′ ∩ V ).

For M ∈ O, define

Mχ = {v ∈M |there exists n depending on z such that (z − χ(z))nv = 0, for all z ∈ Z(g)}.
(3)

Then it is clear that M =
⊕

χM
χ. Let Oχ be the subcategory with objects M = Mχ. Therefore

we have

Proposition 3.3. O =
⊕

χOχ.
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A brief explanation of blocks. If A,B are simple objects, and has non-split extension, 0 →
A → M → B → 0, we put A,B in a same block. If there is a sequence of simple objects
A = A0, A1, · · · , An = B, such that each adjacent pair is in the same block, then we put A,B
in the same block. If all the simple factors of M is in the same block, we put M in that block
too. It turns out Oχ is a block if χ = χλ, and λ ∈ Λ. If χ ∈ h∗, then it is possible that Oχλ

can
be decomposed into abelian subcategories.

4 Characters

Recall that if M is a finite dimensional module, we define ch M as an element in the group ring
ZΛ: ch M =

∑
λ dim(Mλ)e(λ). Here e(λ) represents a generator in ZΛ. We have e(λ)e(µ) =

e(λ+ µ).
For O, or more generally g-modh−s.s.,f.d., we define ch M as a function f : h∗ → Z, with

f(λ) = dimMλ. Then the product now becomes convolution. In fact, we have characteristic
function e(λ), which values 1 on λ and 0 else where. Intuitively, we think of e(λ) as exponentials
and f as a fourier-transform

∑
λ f(λ)e(λ).

Proposition 4.1. ch (L⊗N) = ch L ∗ ch N , if L ∈ g-modf.d.. If we have short exact sequence
0→M ′ →M →M ′′ → 0, then ch M = ch M ′ + ch M ′′.

The character of Verma modules are simple, and they are described using a single function
p. p(γ) is defined by the number of solutions to γ = −

∑
γα
α.

Proposition 4.2. ch M(0) = p, ch M(λ) = e(λ) ∗ p.

The character of L(λ) is much more complicated. By section 2, 3, we can write ch M(λ) =∑
a(λ, µ)ch L(µ), where µ ≤ λ and µ linked to λ. a(λ, λ) = 1. Inverting these relations we

have
ch L(λ) =

∑
w∈W,w·λ≤λ

b(λ,w)ch M(w · λ). (4)

The coefficients b(λ,w) is in general difficult to compute, and is given by Kazhan-Lusztig. Now
we compute b(λ,w) for λ ∈ Λ+, which is equivalent to the Weyl character formula.

Theorem 4.1. For λ ∈ Λ+, the coefficient b(λ,w) = (−1)l(w), where l(w) is the length.

Before proving the theorem, we rewrite p. Let fα(λ) =
∑

k∈N e(λ − kα). Then we have
identities

p =
∏
α>0

fα (5)

(e(0)− e(−α)) ∗ fα = e(0). (6)

The key to the proof is to introduce the Weyl denominator q :=
∏
α>0(e(α/2)−e(−α/2)). Then

we have
q ∗ ch M(λ) = e(λ+ ρ). (7)

Proof. of Theorem 4.1
We have:

q ∗ ch L(λ) =
∑
w∈W

b(λ,w)e(w(λ+ ρ)). (8)

Note the w · λ ≤ λ for all w ∈ W in this case. Consider the action of sα, q is changed to
−q, and we already know from Proposition 2.4 that ch L(λ) is invariant under W . So we have
b(λ,w) = −b(λ, sαw). Since b(λ, λ) = 1, we have b(λ,w) = (−1)l(w).
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The above result suggests to write ch L(λ) as a Euler characteristic. In other words, there
is a BGG resolution:

· · · →
⊕

w∈W,l(w)=k

M(w · λ)→ · · · →M(λ)→ L(λ)→ 0. (9)

5 Projectives and BGG Reciprocity

We first remark that ExtO 6= ExtU(g). To define the derived functor of Hom we need enough pro-
jectives. We have mentioned that M(λ) is projective if λ is dominant. To get more projectives,
we use the following observation:

Proposition 5.1. If P is projective, and L fiinite dimensional, then P ⊗ L is projective.

Proof. We have Hom(P⊗L,M) = Hom(P,L∗⊗M). This is compatible with U(g) structure.

Proposition 5.2. If M ∈ g-modf.d., then M(λ) ⊗M has standard filtration with successive
quotients M(λ+ µ), with (M(λ)⊗M : M(λ+ µ)) = dimMµ.

Proof. Use the tensor identity

(U(g)⊗U(b) L)⊗M ∼= U(g)⊗U(b) (L⊗M). (10)

Take L = Cλ, and use (P3) of section 2.

This proposition has two immediate consequences.

Proposition 5.3. O has enough projectives (and injectives).

Proof. For L(λ), consider M(λ+ nρ)⊗ L(nρ).

Therefore we can associate each L(λ) a projective P (λ) � L(λ). If in addition we require
P (λ) is essential (it has no proper submodule maps onto L(λ)), the it is uniquely determined.
Clearly P (λ) is indecomposible. Moreover, using just the universal properties of P (λ), we have

Proposition 5.4. Any projective in O is a direct sum of P (λ).

Proposition 5.5. P (λ) has standard filtration.

Proof. By proposition 5.2, we can embed P (λ) as a direct summand of M(λ+ nρ)⊗ L(nρ) for
large ρ.

We are ready to prove the following fundamental result.

Theorem 5.1. BGG Reciprocity.

(P (λ) : M(µ)) = [M(µ), L(λ)] = [M(µ)∨, L(λ)]. (11)

Proof. The key is to identify both sides as dim HomO(P (λ),M(µ)∨).

Lemma 1. If M has standard filtration, then

dim HomO(M,M(µ)∨) = (M : M(µ)). (12)

Proof. Use induction on the length ofM . Use Ext(M(µ),M(λ)∨) = 0, dim HomO(M(µ),M(λ)∨) =
δλµ. A map M(λ)→M(λ)∨ is given by M(λ) � L(λ) ∼= L∨ ↪→M(λ)∨.

Lemma 2. For any M ∈ O, dim HomO(P (λ),M) = [M : L(λ)].

Proof. Again use induction on the induction on the length, except we use the usual filtration
of M .
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