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1 Introduction

This lecture is a dijest of chapter 1-3 of book [1]. We fix a complex semisimple lie algebra g, and a
borel subalgebra b, with nilpotent radical n. So we have g = n=!@h@n. Let U(g) be the universal
enveloping algebra. By Poincaré-Birkoff-Witt (PBW), we have U(g) = U(n=)U(h)U(n). The
category of U(g) modules is denoted g-mod, and the subcategory of finite dimension modules
g-mod”*%. And the category of weight modules is denoted g-mod"—** (for h-semisimple). If in
addition the each weight space has finite dimension, the subcategory is denoted g-mod?=%5-7¢-.

Before defining the Berstein-Gelfand-Gelfand (BGG) category O, we mention that is con-
tains finite dimensional modules and highest weight modules (which contains Verma modules
M(X)). Each M(\) has a unique simple quotient called L(A). They are all the simple objects
of O.

Unlike g—modf ‘- which is semisimple by Weyl Reducibility Theorem, O is not semisimple.
In such cases, we introduce the notion of blocks. We have decomposition

o= € o (1)

X€ESpec(Z(g))

Here SpecZ(g) is just a pretentious way to write characters Z(g) — C, where Z(g) is the center
of U(g). We have an explicit description of Z(g) due to the Harish-Chandra isomorphism:
£:Z(g) = UH)W. Oy is sometimes called blocks.

Another decomposition result holds for projectives. The category O has enough projectives
(and injectives). For each A\ € h*, we associate one indecomposible projective P(\) — L(A). It
turns out that any projective module is a direct sum of some P(\).

Filtration is yet another way to approximate a decomposition. For an object M € O, we
have a finite length filtration 0 C My C My --- C M,, = M, such that each M;/M;_1 = L(\) for
some A. The multiplicity of L(\) is denoted [M : L(\)]. We also have the notion of standard
filtration (or Verma Flag), by requiring M;/M;_1 = M (M) for some A. The multiplicity of M (\)
is denoted (M : M()\)). Not all object in O has standard filtration. For example, L(\) usually
don’t have standard filtration.

One reason we consider standard filtration is that M(\) also form a basis of K(O). In
fact, we have [M(A)] = [L(A)] + 3, <) a(A, p)[L(p)], where a(A, p) = [M(X) : L(p)]. So the
change of basis is an “upper triangular” matrix, with diagonals all 1. The inverse relations can
be written as [L(A)] = [M(A)] + >2,<\ b(A, p)[M(A)]. The coefficient b(A, p1) is determined by
Kazhdan-Lusztig conjecture.

Finally we have the fundamental result BGG reciprocity:

(P(A), M(p)) = [M (), LA)]- (2)



2 Modules in Category O

2.1 Definition of O
Now we define the category O as a full subcategory of g-mod with objects M satisifying:
1. M is finitely generated;
2. M is a weight module, in other words it has a decomposition M = P Ach* M.
3. M is locally n finite: for each v € M, the vector space U(n)v is finite dimensional.
There are several direct consequences of the axiom:
(P1) O is noetherian and abelian;

(P2) For each M € O, the set of weights appeared is contained in | |,,; A —T', where I is finite
and T is the semigroup generated by positive roots (®V).

Proof. Let V be the span of weight vector generators. Then dimV < oco. Consider
W =U(b) -V and use PBW. O

(P3) If L € g-mod’%, and M € O, then L ® M € O. Furthermore, the functor O — O : M
L ® M is exact.

Proof. Suppose L has basis weight vectors vy,--- ,v,, and M is generated by weight
vectors my, - - - ,my, then we claim that v; ® m; are weight vector generators of L ® M. In
fact, let N be the module they generate. Then clearly v ® m; € N. Now if =z € U(g), we
have z(v ® m;) = (zv) @ mj + v ® (xm;). So v ® (xm;) € N. O

(P4) L is locally Z(g) finite.

2.2 Highest Weight Modules and Verma Modules

Let M € g-mod, we say v € M is a mazimal vector if it is a weight vector and n-v = 0. By
assumption each object in O has a maximal vector. If M = U(g) - v for a maximal vector v,
with weight A, then we say that M is a highest weight module of weight A.

Proposition 2.1. If M is a highest weight module, then it has a unique maximal submodule
and a unique simple quotient.

For a weight A\ € h*, we have the action of b given by b - h — C. Let C, denote the one
dimensional U(b) module. We define the Verma module V(\) = U(g) ®y () Cx. By the above
above proposition, we write N(\) as the maximal submodule of M(\), and L(A) the unique
simple quotient.

Proposition 2.2. dim Homp(L(A), L(p)) = 0.

Proposition 2.3. M()) is universal among highest weight modules of weight A, and L()\) are
all the simple objects of M.

Example 2.1. Consider s((2,C). M(X) = @,y Cuvsi, where hv; = (A — 2i)v;, zv; = (A — i +
1)7)1'_1, Yv; = (Z + 1)1),‘.



Proposition 2.4. L(]\) is finite dimensional if and only if A € A*. In such a case, dim L(\),, =
dim L(A)w, for w € W, the Weyl group.

Proposition 2.5. If a is a simple root, and n = (\, ") € Z*, then M ()\) has a maximal vector
v =y o, with weight = A — (n+ 1)a.

Proof. Calculate [,y "] = —(n+ 1)y?(n — hy). O

Now consider the action soA = X — (A, a¥)a. We define the shifted action (or dot action)
SaAd=A—(n+1)a=X— (A +p,a)a. In other words, w - A := w(A + p) — p. We say that u
is linked to X if there is a w € W such that p = w - A\. We say that A is dominant if there is
no p < X that is also linked to A. We have a similar notion of antidominance. Note that this
dominance is different from the usual one. In particular, A € AT — p is dominant.

It turns out that any linkage class has a unique dominant and a unique antidominant weight,
and we have

Proposition 2.6. M(\) = L(\) if A is antidominant. M (\)(= P()\)) is projective if X is
dominant.

3 Decomposition with respect to the action of center

Recall that Z(g) is the center of U(g). Let z € Z(g), and v € M () is the highest weight vector.
Then M, = Cv. We have h(zv) = z(hv) = A(h)zv. So zv € M), and therefore there exists
xXx(z) € C such that zv = x(z)v. Now we have obtained a character x) : Z(g) — C.

The character y) can be described explicitly. Let pr : U(g) — U(h) be the projection to
U(h) by sending z;,y; — 0. A extends to an algebra map U(h) — C, we have xy = Ao pr.

Although pr is not an algebra map, its restriction to Z(g) £ : Z(g) — U(h) is indeed a
homomorphism, because [ ey KerA = 0.

Notice that we have nonzero map M (w-\) — M(X), if w- A < A. Using a density argument
we have

Proposition 3.1. The image of map ¢ is contained in U(h)".
Theorem 3.1. (Harish-Chandra) The map x : Z(g) — U(h)" is an isomorphism.
We can use Harish-Chandra isomorphism to prove the following fact:
Proposition 3.2. O is Artinian. Moreover, if M, N € O, then dim Homp (M, N) < co.

Proof. Notice that each M € O has a filtration with successive quotients isomorphic to some
highest weight module. Therefore it suffice to show that M () is artinian. Let V =" s M(X)y..
If N D N’ are submodules of M, then Z(g) acts on N/N’ with character y,. So N/N' contains
a maximal vector with weight p such that x, = x. Therefore dim(NNV) > dim(N'NV). O

For M € O, define

MX = {v € M|there exists n depending on z such that (z — x(z))"v =0, for all z € Z(g)}.

(3)
Then it is clear that M = @X MX. Let O, be the subcategory with objects M = MX. Therefore
we have

Proposition 3.3. O =@, O,.



A brief explanation of blocks. If A, B are simple objects, and has non-split extension, 0 —
A— M — B — 0, we put A, B in a same block. If there is a sequence of simple objects
A=Ay, Ay,--- , A, = B, such that each adjacent pair is in the same block, then we put A, B
in the same block. If all the simple factors of M is in the same block, we put M in that block
too. It turns out O, is a block if x = x, and A € A. If x € b*, then it is possible that O,, can
be decomposed into abelian subcategories.

4 Characters

Recall that if M is a finite dimensional module, we define ch M as an element in the group ring
ZA: ch M =", dim(My)e(X). Here e(\) represents a generator in ZA. We have e(\)e(p) =
e(A+ p).

For O, or more generally g-mod" *%/% we define ch M as a function f : h* — Z, with
f(A) = dim M. Then the product now becomes convolution. In fact, we have characteristic
function e(A), which values 1 on A and 0 else where. Intuitively, we think of e()) as exponentials
and f as a fourier-transform >, f(A)e(A).

Proposition 4.1. ch (L® N) =ch L*ch N,if L € g-mod”/*%. If we have short exact sequence
0—- M — M — M"— 0, then ch M =ch M’ +ch M".

The character of Verma modules are simple, and they are described using a single function
p. p(7) is defined by the number of solutions to v = — a.

Yo
Proposition 4.2. ch M(0) =p, ch M(\) =e()\) *p.

The character of L(\) is much more complicated. By section 2, 3, we can write ch M (\) =
> a(A, p)ch L(p), where p < X and g linked to A. a(A, \) = 1. Inverting these relations we
have

ch LA = Y b\ w)ch M(w-\). (4)
weEW,w- A<
The coefficients b(\, w) is in general difficult to compute, and is given by Kazhan-Lusztig. Now
we compute b(A, w) for A € AT, which is equivalent to the Weyl character formula.

Theorem 4.1. For A € AT, the coefficient b(\, w) = (—1)"®), where I(w) is the length.

Before proving the theorem, we rewrite p. Let fo(\) = > ,cye(A — ka). Then we have
identities

p = Hfa (5)

a>0

(e(0) —e(—a)) x fa = €(0). (6)

The key to the proof is to introduce the Weyl denominator ¢ := [] - (e(a/2) —e(—a/2)). Then
we have

gxch M(\) =e(A+p). (7)
Proof. of Theorem 4.1
We have:
gxch L(A) = Y b w)e(w(A+ p)). (8)
weW

Note the w - A < X for all w € W in this case. Consider the action of s,, ¢ is changed to
—q, and we already know from Proposition 2.4 that ch L(\) is invariant under W. So we have
b\, w) = —b(\, sqw). Since b(\, \) = 1, we have b(\, w) = (—1)"®), O



The above result suggests to write ch L(\) as a Euler characteristic. In other words, there
is a BGG resolution:

o P M@A) = M(A) = L(A) = 0. (9)
weW,l(w)=k

5 Projectives and BGG Reciprocity

We first remark that Exto # Exty(g). To define the derived functor of Hom we need enough pro-
jectives. We have mentioned that M (\) is projective if A is dominant. To get more projectives,
we use the following observation:

Proposition 5.1. If P is projective, and L fiinite dimensional, then P ® L is projective.

Proof. We have Hom(P® L, M) = Hom(P, L*®M). This is compatible with U(g) structure. [

Proposition 5.2. If M € g-mod”®, then M(\) ® M has standard filtration with successive
quotients M (A + ), with (M(X) ® M : M(X + p)) = dim M,,.

Proof. Use the tensor identity
(U(g) @up) L) @ M = U(g) @y (L @ M). (10)
Take L = C,, and use (P3) of section 2. O

This proposition has two immediate consequences.
Proposition 5.3. O has enough projectives (and injectives).

Proof. For L()), consider M (A + np) ® L(np). O

Therefore we can associate each L(A) a projective P(A) — L(A). If in addition we require
P()) is essential (it has no proper submodule maps onto L(\)), the it is uniquely determined.
Clearly P()) is indecomposible. Moreover, using just the universal properties of P(\), we have

Proposition 5.4. Any projective in O is a direct sum of P(\).
Proposition 5.5. P()\) has standard filtration.

Proof. By proposition 5.2, we can embed P()) as a direct summand of M (X + np) ® L(np) for
large p. O

We are ready to prove the following fundamental result.

Theorem 5.1. BGG Reciprocity.

(P(A) + M(p)) = [M(p), L(N)] = [M(1)", L(N)]. (11)
Proof. The key is to identify both sides as dim Home (P (A), M (p)Y). O

Lemma 1. If M has standard filtration, then

dim Homo (M, M(u)") = (M : M(u). (12
Proof. Use induction on the length of M. Use Ext(M (), M(X)Y) = 0, dim Home (M (@), M(A\)Y)
Oau- A map M(X) — M(X)Y is given by M(X) — L(A\) = LY — M(\)V. O

Lemma 2. For any M € O, dim Homp(P(X), M) = [M : L(\)].

Proof. Again use induction on the induction on the length, except we use the usual filtration
of M. O
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