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1. Introduction

1.1. These are the notes for the author’s talks at the Langlands Support Group seminar at
Harvard on February 20 and March 13, 2019. In these talks, the notions of compact and cuspidal
representations of p-adic groups were introduced, thus facilitating the first steps in the program
of reducing the problem of classifying all smooth irreducible representations of a p-adic group
to the problem of classifying cuspidal representations.

1.2. Notation. Throughout the note, F will denote a p-adic field with ring of integers O and
fixed uniformizer π. G will always denote the F -points of a reductive group. All representations
will be assumed to be smooth, and Rep(G) will denote the category of smooth representations
of G.

We will be following Bernstein’s course notes [Ber].

2. Brief refresher on generalities on G-representations

In this section, G is any p-adic group.

Definition 2.0.1. Let V be a C-vector space. A continuous representation ρ : G→ GLn(V ) is
called smooth if for any v ∈ V , the stabilizer StabG(v) ⊂ G is open.

Smoothness is thought of as a reasonable finiteness condition. This is elucidated by the
following

Proposition 2.0.2. A continuous representation V is smooth if and only if V = ∪
K⊂G

V K ,

where K ⊂ G varies through the set of all compact subgroups of G.

From now on, we will restrict our attention to smooth representations.

Definition 2.0.3. A smooth representation V is called admissible if for any open compact
subgroup K ⊂ G, the space of invariants V K is finite-dimensional.

Admissibility allows one to study the representation ”finite-dimensional piece at a time”.
Recall further the definition of the Hecke algebras associated to G:

Definition 2.0.4. Let K ⊂ G be an open compact subgroup. The corresponding Hecke algebra
HK is defined to be the algebra of locally constant, compactly supported, bi-K-invariant dis-
tributions on G, viewed as an algebra under convolution. The Hecke algebra for K = {1} is
denoted H and called the Hecke algebra of G.

The key property of Hecke algebras is

Proposition 2.0.5. For any compact open subgroup K ⊂ G, there is an equivalence of cate-
gories

Rep(G)K-inv ' HK-mod

where Rep(G)K-inv denotes the full subcategory of Rep(G) consisting of representations con-
taining a non-zero vector fixed by all elements of K. The functor in one direction sends
V ∈ Rep(G)K-inv to V K .
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We will use juxtaposition or ∗ interchangeably to denote the multiplication on H and HK .
For a compact open subgroupK ⊂ G, eK ∈ H will denote the unique bi-K-invariant distribution
supported on K with integral 1. For g ∈ G, let δg ∈ H denote the delta distribution supported
at g. The following proposition follows straightforwardly from the definitions:

Proposition 2.0.6.

(1) For any compact open subgroups K1,K2 ⊂ G, eK1K2
= eK1

∗ rK2
.

(2) For any g ∈ G and compact open K ⊂ G, egKg−1 = δg ∗ eK ∗ δg−1 .

3. Compact representations

In this section, we will develop the theory of compact representations - a simpler version of
cuspidal representations that we will make use of in the sequel.

Throughout this section, we will be assuming that G is any unimodular, countable at infinity
group.

3.1. Recall that the matrix coefficient of a G-representation (ρ, V ) associated to v ∈ V and

ṽ ∈ Ṽ is the function Dv,ṽ : G→ C defined by

g 7→ 〈ṽ, ρ(g−1)v〉.

The smoothness assumption on V guarantees that mv,ṽ is locally constant.

Definition 3.1.1. A representation V of G is called compact if all its matrix coefficients are

compactly supported, i.e. for all v ∈ V and ṽ ∈ Ṽ , the function mv,ṽ has compact support.

Compact representations behave similarly to representations of compact groups. In partic-
ular, we will show that they are semisimple, and copies of irreducible compact representations
can be split off as direct summands from any representation. Of course, both these properties
fail for general non-compact representations.

The following is a convenient technical characterization of compact representations.

Proposition 3.1.2. Let (ρ, V ) be a G-representation. Then V is compact if and only if for
any open compact subgroup K ⊂ G and v ∈ V , the function DK,v : G→ V defined by

v 7→ ρ(eK)ρ(g)v

has compact support.

Proof. Fix v ∈ V and an open compact subgroup K ⊂ G. It suffices to prove that the image
of Dv,K is finite-dimensional, as the contrary would directly lead to a matrix coefficient with
non-compact support. If this was false, then there would exist an seqeunce of group elements
{gi} such that the the vi = Dv,K(gi) are linear independent. Since the function Dv,K is locally

constant, this implies that the {gi} are not contained in any compact set. Define ṽ ∈ Ṽ K by
〈ṽ, vi〉 = 1 and extend by zero. Then {gi} ⊂ supp(mv,ṽ), which contradicts the assumption
that all matrix coefficients are compactly supported.

Conversely, let (ρ, V ) be compact, and choose any v ∈ V and ṽ ∈ Ṽ ; let K be a compact
open subgroup stabilizing v. Then the support of mv,ṽ is contained in the support of DK,v,
which is compact by assumption. �

Proposition 3.1.3. Finitely generated compact representations are admissible.
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Proof. Let (ρ, V ) be any compact representations, generated by some v1, . . . , vn. Then V K =
eKV is generated by {ρ(eK)ρ(g)vi | g ∈ G, i ∈ {1, . . . , n}}. For each i, the function g 7→
ρ(eK)ρ(g)vi has compact support by assumption, hence the space {ρ(eK)ρ(g)vi| g ∈ G} is
finite-dimensional and hence V K is finite-dimensional. �

Corollary 3.1.4. Irreducible compact representations are admissible.

We will later prove that all irreducible representations are admissible.

3.2. The formal dimension.

Proposition 3.2.1. Let (ρ,W ) be any compact representation of G. Then the natural map

α : W ⊗ W̃ → (EndC(W ))sm defined by α(v ⊗ ṽ)(u) = 〈ṽ, u〉v is an isomorphism of G × G-
modules.

Here EndC(W ) is a G × G-module in the usual way, using the action (g1, g2)(f) =
ρ(g1)fρ(g2)−1.

Proof. Injectivity is clear. For surjectivity, note that both sides are finitely generated compact
representations of G×G, hence are admissible by Proposition 3.1.3. This allows us to deduce
surjectivity from injectivity by working at a finite level at a time: for any compact open subgroup

K ⊂ G, the image of α((W ⊗ W̃ )K×K) lies in (EndC(W ))K×K , and since α is injective, this

implies that dim((W ⊗ W̃ )K×K) ≤ dim(EndC(W ))K×K = dim(EndBC(W )sm)K×K . On the
other hand, End(W )K×K is contained in End(WK), which implies that

dim(EndC(W )K×K) ≤ dim(EndC(WK)) = dim(WK)2 ≤ dim(W ⊗ W̃ )K×K ,

which implies that α : (W ⊗ W̃ )K×K → EndC(W )K×K is an isomorphism. Since both W ⊗ W̃
and EndC(W )sm are smooth, the claim follows. �

Fix a two-sided Haar µG on G; this gives an algebra isomorphism between H and the algebra
of locally constant, compactly supported functions G → C. Let (ρ,W ) be an irreducible
compact representaiton, and consider the composition

W ⊗ W̃
v⊗ṽ 7→mv,ṽ−−−−−−−→ H

ρ−→ (EndCW )sm
α−1

−−→W ⊗ W̃ .

Let us denote the map W ⊗ W̃ → H by m and the composition H → W ⊗ W̃ by ϕ. The

composition W ⊗ W̃ → W ⊗ W̃ defines a map of G×G-modules; since W ⊗ W̃ is irreducible,
this composition must be a scalar, which we will be denote d(ρ) and call the formal dimension
of (ρ,W ).

Lemma 3.2.2. The formal dimension d(ρ) of any (non-zero) compact representation (ρ,W )
is non-zero.

Proof. Pick any w ∈ W ⊗ W̃ be any element such that h = m(w) is non-zero (where m :

W ⊗ W̃ → H is the matrix coefficient map); it suffices to prove that ϕ(h) 6= 0. We will prove
this by proving the following two facts: for any irreducible representation (τ, V ) not isomorphic
to (ρ,W ), τ(h) = 0, and for any non-zero x ∈ H, there exists an irreducible representation
(π, U) such that π(x) 6= 0.

To prove the first claim, let (τ, V ) be any irreducible representation of G not isomorphic to
ρ, and consider any v ∈ V . Consider the morphism of G-modules

W ⊗ W̃ → V

w ⊗ w̃ 7→ τ(m(w ⊗ w̃))v,
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where W ⊗ W̃ is considered a G-module via its usual action on the first component and the

trivial action on the second. With this G-module structure, W ⊗ W̃ is isomorphic to a direct

sum of copies of W , which implies that the same is true of the image of W ⊗ W̃ in V . Since V
is irreducible and not isomorphic to W , this implies that the image is zero, and in particular,
τ(h)v = 0. This proves that τ(h) = 0.

The second claim is Lemma 3.2.3, which we will (independently) prove below. �

Lemma 3.2.3. For any 0 6= h ∈ H, there exists an irreducible representation (ρ, V ) of H such
that ρ(h) 6= 0.

This lemma may be thought of as establishing that the Hecke algebra of G behaves somewhat
like a semisimple algebra. Before proving it, we shall require a purely algebraic lemma.

Lemma 3.2.4. Let A be an associative C-algebra with unit, of countable dimension over C.
Then for any non-nilpotent a ∈ A, there exists a simple A-module M such that a|M 6= 0.

Remark 3.2.5. The non-nilpotency condition cannot be relaxed: the only simple module over
A = C[x]/(x2) is M = C, with x acting as 0.

Proof. First let us see that there exists some λ ∈ C such that a− λ is not invertible in A. This
is evident if a ∈ C; if not, assume the contrary, and consider the elements {(a− λ)−1, µ ∈ C}.
Since A has countable dimension over C, there exists some linear dependence of the form

k∑
i=1

ci(a− µ)−1 = 0.

Multiplying by
∏k
i=1(a− λi) and factoring the resulting polynomial tells us that

am0

∏
j

(a− λi) = 0

for some λi ∈ C. Since a is not nilpotent, this implies that the a−λi are zerodivisors and hence
not invertible, as desired.

To prove the lemma, pick any λ such that a−λ is not invertible, and let M be any irreducible
quotient of A/(a − λ)A (which is non-zero precisely because a − λ is not invertible). Then
a|M = λ|M 6= 0. �

Proof of Lemma 3.2.3. Recall that G is assumed to be unimodular; this allows us to write
h = φµG, where µG is a two-sided Haar measure on G and ϕ is a compactly supported, locally
constant function G → C. Define h∨ = ϕ∨µG, where ϕ∨(g) = ϕ(g−1). Then µ := hh′ = ψµG,
where

ψ(g) =

∫
a∈G

ϕ(a)ϕ(ga)da.

Setting g = 1, we see that µ 6= 0. Moreover, an identical argument proves that µ2 6= 0, and in
general, µi 6= 0 for any i ∈ N. Thus, µ is a non-nilpotent element of HK , and it suffices to find
a representation of HK that doesn’t map µ to 0. Since HK is countable over C and has a unit
element eK , the lemma follows from Lemma 3.2.3. �
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3.3. Semisimplicity of compact representations. In this section, we will prove

Theorem 3.3.1. Let (ρ,W ) be a compact irreducible representation of G. Then for any V ∈
Rep(G), there exists a decomposition V ' VW ⊕ V ⊥W , where VW 'W⊕I and no Jordan-Holder
factor of V ⊥W is isomorphic to W .

The theorem is clearly implied by the following proposition:

Proposition 3.3.2. Let (ρ,W ) be an irreducible compact representation of G, and let m and
ϕ be as in the previous section; let (η, V ) be any representation of G. Define

EW,K = d(ρ)−1m(ϕ(eK))

V0 =
∑
K⊂G

Im(η(EW,K))

V1 = Ker
K⊂G

(η(EW,K))

where K runs through all compact open subgroups of G. Then

(1) V0 and V1 are G-submodules of V
(2) V = V0 ⊕ V1
(3) V1 does not have subquotients isomorphic to W
(4) V0 is isomorphic to a direct sum of copies of W .

Proof. Parts (1) and (2) are evident. For (3), note that by definition of formal dimension,
ϕ(EW,K) = ϕ(eK) for any compact open subgroup K ⊂ G. This implies that if V1 contained
a subquotient isomorphic to W , then EW,K would not act by 0 on that subquotient. However,
this is false by construction.

To prove part (4), it suffices to show that V0 is generated by its submodules that are iso-

morphic to W . By construction, it is generated by images of maps W ⊗ W̃ → V0 defined by,

for v0 ∈ V0, w ⊗ w̃ 7→ ρ(m(w ⊗ w̃))v0. Since W ⊗ W̃ is isomorphic to a direct sum of copies of
W (under the trivial G-action on the second factor, as in the proof of Lemma 3.2.2), the claim
follows. �

4. Cuspidal representations

From here onwards, G = GLn(F ).

4.1. The structure of HK . Let K be an open compact subgroup of G. There is a map of
sets a : G→ HK defined by a(g) = eK ∗ δg ∗ eK . a(g) is the unique K-bi-invariant distribution
supported on KgK with integral 1. a(g) only depends on the double coset of g mod K, and as
g varies through double coset representatives, the a(g) form a linear basis of HK .

Thus, to study the algebra HK we need to study double cosets. The fundamental result to
this end is the Cartan decomposition. Consider the subgroup

Λ+ =

π
l1

. . .

πln

 , where l1 ≥ l2 ≥ . . . ≥ ln ∈ Z.

The Cartan decomposition is G = K0Λ+K0.

Now let K = Ki be a congruence subgroup, and choose representatives x1, . . . , xr for K\K0.
The Cartan decomposition implies that a(xiλxj), i, j ∈ {1, . . . , r}, λ ∈ Λ+ form a basis for HK .
Moreover, since K0 normalizes K, we have that xiK = Kxi and hence for any g ∈ G, yKxiK ·
KgK = KxigK. This implies that a(xi)a(g) = a(xig); similarly, a(gxi) = a(g)a(xi).
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Let H0 denote the linear span of a(xi), and C denote the linear span of {a(λ), λ ∈ Λ+}.

Theorem 4.1.1. C is a finitely generated commutative subalgebra of HK , and HK = H0CH0.

Before proving the theorem, note that its second part follows directly from the preceding
paragraph: the a(xiλxj) form a basis for HK as λ ∈ L+ and i, j ∈ {1, . . . , r} vary, and since
a(xiλxj) = a(xi)a(λ)a(xj), the claim follows.

The crux of the matter for the first claim lies in the fact that elements of Λ+ do not normalize
K and hence we cannot simply move the K’s around. We will divide K into subgroups that we
can move around, and this will be sufficient to prove the claim.

Let U be the standard unipotent subgroup of G consisting of upper-triangular matrices with
1 on the diagonal, and let U− be the opposite unipotent, consisting of lower-triangular matrices
with 1 on the diagonal. Let M0 ⊂ G be the subgroup of diagonal matrices, and consider
K+ = K ∩ U,K− = K ∩ U−,Kd = K ∩M0.

Proposition 4.1.2. K = K+KdK−.

Proposition 4.1.3. For any λ ∈ Λ+, λK+λ
−1 ⊂ K+ and λ−1K−λ ⊂ K−.

Proof. For any u = ui,j ∈ K+, (λuλ−1)i,j = λiλ
−1
j ui,j . Since λiλ

−1
j ∈ O for j ≥ i, λuλ−1 ∈ K+

and thus λK+λ
−1 ⊂ K+. The other case follows identically. �

Proof of theorem 4.1.1. We need to show that for any λ, ν ∈ Λ+, KλKµK = KλµK. By
Proposition 4.1.3, we have that

KλKµK = KλK+KdKiµK = K(λK+λ
−1)λKdµ(µ−1K−µ)K

⊆ KK+λKdµK−K

= KλµK.

The reverse inclusion always holds, which concludes the proof. �

Now we will use this decomposition of the algebra HK to study modules over it.

Proposition 4.1.4. For any V ∈ Rep(G) and λ ∈ Λ+,

ker(a(λ)|V K ) = ker(eλ−1K+λ)|V K
.

Proof. We directly calculate

a(λ) = eK ∗ δλ ∗ eK = eK+
∗ eKd

∗ eK− ∗ δλ ∗ eK
= eK+

∗ eKd
∗ δλ ∗ eλ−1K−λ ∗ eK

= eK+ ∗ δλ ∗ eKd
∗ eK

= δλ ∗ eλ−1K+λ ∗ eK ,

where we used that λ−1K−λ is contained in K. It remains to observe that eK acts as the
identity on V K , and δg acts invertibly. �

According to this theorem, to study the behaviour of the operators a(λ), we need to un-
derstand the subgroups λ−1K+λ. Consider the special case λ = diag(πl1 , . . . , πln), where
l1 > l2 . . . > ln (in general, we might have equalities). Then the valuation of λ−ni λnj gets
arbitrarily small as n becomes large, and it is straightforward to show that

∪
i
λ−nK+λ

n = U.

Proposition 4.1.5. ∪
i

ker(eUi) = {π(u)v − v} =: V (U).
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Proof. Follows from ∪
i
λ−nK+λ

n = U and Proposition 4.1.4. �

Corollary 4.1.6. ∪
i

ker a(λi) ∪ V K = V (U) ∪ V K .

For general λ = diag(πl1 , . . . , πln) with

l1 = . . . = la1 > la1+1 = . . . = la1+a2 > . . . > ln−ak+1 = . . . = ln,

the correct replacement for U is the unipotent radical of the parabolic Pλ:

Pλ =

M1 ∗ ∗

0
. . . ∗

0 0 MK

 , Uλ =

ida1×a1 ∗ ∗

0
. . . ∗

0 0 idak×ak


where each Mi is an ai × ai invertible matrix; in other words, elements of Pλ and Uλ are
block-upper-diagonal and block-unipotent, respectively.

Letting KP
+ = K ∩UP , KP

− = K ∩UP , one proves the following proposition similarly to the
previous several propositions:

Proposition 4.1.7. For any V ∈ Rep(G) and λ ∈ Λ+,

(1) K = KP
+K

P
d K

P
− , λKP

+λ
−1 ⊂ KP

+ , and λ−1KP
−λ ⊂ KP .

(2) ∪
i
λ−iKP

+λ
i = Uλ.

(3) ∪
i

ker a(λi) ∪ V K = V (Uλ) ∪ V K .

4.2. Jacquet functors and induction. Motivated by the preceding discussion, we give the
following definitions.

Let P = MU be any parabolic subgroup of G with its Levi decomposition.

Definition 4.2.1. The restriction or Jacquet functor rM,G : Rep(G)→ Rep(M) is defined to
be

V 7→ V/V (U),

The induction functor iG,M : Rep(M)→ Rep(G) is defined to be

W 7→ indGP (W ),

where indGP is usual functor of induction, and W is considered a P -representation by letting
U acts trivially.

Note that since P is cocompact (by the Iwasawa decomposition G = PK0), the two induction
functors coincide. Here are some basic properties of these functors:

Proposition 4.2.2. Let P = MU be a parabolic subgroup of G.

(1) iG,M is right adjoint to rM,G.
(2) For any Levi subgroup N of M , rN,M ◦ rM,G = rN,G and iG,N ' iG,M ◦ iM,N .
(3) iG,M takes admissible representations to admissible representations.
(4) rM,G takes finitely generated representations to finitely generated representations.
(5) Both iG,M and rM,G are exact.

Proof.

(1) For any V ∈ Rep(G) and W ∈ Rep(G), we have

HomG(V, iG,M (W )) ' HomP (V,W ) ' HomM (V/V (U),W ) = HomM (rM,G(V ),W ),

where the first isomorphism holds by Frobenius reciprocity, the second isomorphim
holds since U acts trivially on W , and the last isomorphism holds by definition.
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(2) This is straightforward to check by unwinding the definitions.
(3) This holds for induction from any cocompact subgroup H ⊂ G: by definition, for any

admissible representation (ρ,W ) of H, indGP (W ) is the smooth part of

L(W ) := {f : G→W | ∀h ∈ H, f(hg) = ρ(h)f(g)},
where g acts on the right. For any compact open subgroup K ⊂ G, by cocompact-
ness of H there exist finitely many coset representatives g1, . . . , gN for H\G/K. This
implies that any f ∈ L(W )K is determined by its value on the gi. Moreover, by the

transformation property under action of H, we must have f(gi) ∈ V H∩giKg
−1
i , which is

finite-dimensional by assumption. This implies that there is a finite-dimensional space
of choices for f ∈ L(W )K , which proves admissibility.

(4) Recall that G = PK0, by ILet (π, V ) be any finitely generated representation of G; let
us prove that it is finitely generated as a P -representation. Letting v1, . . . , vN be G-
generators of V , we have that V |P is generated by the vectors of the form π(k)vi, where
k ∈ K0. Since (ρ, V ) is smooth, the function k 7→ π(k)vi is locally constant. Since K0

is compact, finitely many choices of k generate the whole image, which guarantees that
the finitely many π(k)vi generate V .

(5) The functor iG,M is exact because induction is exact. To prove that rM,G is exact,
it suffices to prove that V 7→ V/V (U) is exact. This holds because any U has an
exhausting filtration by compact subgroups, and for compact K, the functor V 7→
V/V (K) is exact.

�

4.3. Cuspidal representations. The restriction and induction functors are used to study
representations of G using representations of its reductive groups, thus simplifying the problem.
The cuspidal representations are precisely those which cannot be reduced to smaller groups in
this sense:

Definition 4.3.1. V ∈ Rep(G) is called quasi-cuspidal if for any Levi subgroup M ⊂ G,
rM,G(V ) = 0. V is called cuspidal if it is quasi-cuspidal and finitely generated.

The following is a crucial technical characterization of quasi-cuspidal representations.

Theorem 4.3.2. V ∈ Rep(G) is quasi-cuspidal if and only if for any v ∈ V and compact open
subgroup K ⊂ G, the function Dv,K : G→ V defined by

g 7→ π(eK)π(g−1)v

has compact support modulo center (i.e. its image in G/Z(G) is compact).

Proof. Let V be a quasi-cuspidal representation. We may assume that K = Ki is a congruence
subgroup, and, by choosing i large enough, that K fixes v.

Let x1, . . . , xr be representatives for K\K0, and recall that any g ∈ G is expressible as
g = xiλxj for λ ∈ Λ+. It suffices to prove that the function Λ+ → V defined by

λ 7→ π(a(λ))v

has compact support modulo center on Λ+. Since V is quasi-cuspidal, for any non-central
µ ∈ Λ+, we have

V K ∩ ∪
i

ker a(µn) = V (Uµ) ∪ V K = V K .

This implies that for any µ ∈ Λ+, there exists a large enough Nµ,v such that π(a(µk))(v) = 0
for any k > Nµ,k. Letting µ1, . . . , µn−1 be a basis for Λ+, we find that for any λ =

∑
imiµi

satisfying mi ≥ Nµi,v, we have π(λ)(v) = 0. This gives us an upper bound on the mi and
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implies the required compactness mod center, as we can get a bound below mod center by
multiplying by a diag(πN , . . . , πN ) for large N .

For the converse, note that the conditions imply that the function Λ+ → V defined by
λ 7→ π(a(λ))(v) has compact support modulo center on Λ+. For any non-central λ, the sequence
{λn}n∈N eventually leaves all compact-modulo-center subsets of Λ+ and hence for large enough
n, a(λn)) acts trivially. This implies that V (Uλ)∪V K = V K holds for all congruence subgroups
K, which implies that V is quasi-cuspidal. �

Remark 4.3.3. Identically to Proposition 3.1.2, one can prove that a representation is quasi-
cuspidal if and only if its matrix coefficients are compactly supported modulo center.

This characterization of quasi-cuspidal representations highlights its relation to the compact
represenations studied earlier.

Consider the subgroup Go = {g ∈ G|det(g) ∈ O×}. For G other than GLn, Go is defined to
be the union of the compact subgroups of G; correspondingly, we have

Proposition 4.3.4. Go as defined above is the union of all compact subgroups of GLn.

Proof. For any compact subgroup K, the image of the map g 7→ | det(g)| is compact, which
implies that det(g) ∈ O× for all g ∈ K; this proves that every compact subgroup is contained
in Go. We omit the proof of the converse. �

There is an analogue of the Cartan decomposition for Go : Go = K0Λ+,oK0, where
Λ+,o := Λ+ ∩ Go. Moreover, one can directly exhibit elements ν1, . . . , νl such that
Λ+,o = {

∑
imiνi | mi ≥ 0}. We also have G/Go ' F×/O× ' Z and [G : ZGo] = n.

The key property of Go lies in its following interaction with quasi-cuspidality:

Theorem 4.3.5 (Harish-Chandra). V ∈ Rep(Go) is quasi-cuspidal if and only if it is compact.

Note that the notion of quasi-cuspidality for representations of Go is naturally inherited from
that of G.

Proof. Compact representations are tautologically quasi-cuspidal. Conversely, let V be a quasi-
cuspidal representation. Showing that V is compact amounts to proving that for any v ∈ V ,
the function Λ+ → V defined by

λ 7→ π(a(λ))v

has compact support. As in the proof of Theorem 4.3.2, one shows that any λ =
∑
imiνi acts

trivially if mi > N for some N ∈ N, thus giving an upper bound on the support; however,
unlike in the case of Λ+, for Λ+,o the lower bound is a given, thus proving that the support in
Λ+,o is compact. �

Corollary 4.3.6. Any cuspidal irreducible representation of G is admissible.

Proof. Let V be any cuspidal irreducible representation. Since [G : ZGo] <∞, V |ZGo is finitely
generated; since Z acts by scalars, V |Go is finitely generated.

By Theorem 4.3.5, V |Go is compact, which implies that it is semisimple by [quote theorem];
by [quote other theorem], it is admissible. Since Go contains all compact subgroups of G, the
claim follows. �

Lemma 4.3.7. For any irreducible representation V of G, there exists a Levi subgroup M , a
cuspidal representation W of M and an embedding V ↪→ iG,M (W ).
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Proof. Let M be a Levi subgroup minimal with respect to the condition that W ′ := rM,G(V ) 6=
0. Transitivity of restriction (Proposition 4.2.2(1)) implies that W ′ is quasi-cuspidal. Letting
W be any irreducible quotient of W ′, adjunction implies that

HomG(V, iG,M (W )) ' HomM (W,W ′) 6= 0,

which implies the lemma. �

Corollary 4.3.8. Any irreducible representation of G is admissible.

Theorem 4.3.9 (Uniform Admissibility). Fix an open compact subgroup K ⊂ G. Then there
exists a number c(G,K) such that for any irreducible representation V of G, dim(V K) ≤
c(G,K); equivalently, all irreducible representations of HK have dimension ≤ c(G,K).

In the proof we shall require the following linear-algebraic lemma, the proof of which can be
found under Lemma 4.10 in [BZ]:

Lemma 4.3.10. Let W be a k-dimensional vector space, and let C ⊂ End(W ) be a commutative

subalgebra, generated by l elements. Then dim(C) ≤ k2−
1

2l−1 .

Proof of Theorem 4.3.9. Let W be an irreducible representation of HK ; by Corollary 4.3.8, it
is finite-dimensional. By Burnside’s lemma, the defining map ρ : HK → EndC(W ) is surjective.

Recall that HK = H0CH0, where d := dim(H0) = [K0 : K] and C is a commutative algebra
generated by l elements. Letting k = dim(W ), we have

k2 = dim(End(W )) = dim(ρ(HK))

≤ d2 dim(ρ(C))

≤ d2k2−
1

2l−1 ,

which implies that k ≤ d2l =: c(G,K). �

4.4. Cuspidal components.

Definition 4.4.1. An unramified character is a character ψ : G→ C× that is trivial on Go.

Proposition 4.4.2. Let (ρ, V ) and (ρ′, V ′) be irreducible representations of G. Then

(1) V |Go is semisimple of finite length
(2) The following are equivalent:

(a) V |Go ' V ′|Go

(b) V |Go and V ′|Go share a common Jordan-Holder factor
(c) V ′ ' V ⊗ ψ for some unramified character ψ.

Proof.

(1) Since V is irreducible and [G : ZGo] < ∞, V |ZGo is semisimple of finite length. Since
Z acts as a scalar, the claim follows.

(2) It is clear that c) implies a) and a) implies b), so let us prove that b) implies c).
Since V |Go and V ′|Go are semisimple, the Jordan-Holder condition is equivalent to
HomGo(V, V ′) 6= 0.

Go acts on HomGo(V, V ′) by τ(g)f = ρ′(g)fρ(g)−1; this action factors through
G/Go ' Λ. Since Λ is abelian, there exists an eigenfunction f with character ψ : Λ→
C×. For any g ∈ G, the diagram below commutes:
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V V ′

V V ′

ρ(g)ψ(g)

f

ρ′(g)

f

This implies that f is a non-zero intertwining map V ⊗ ψ → V ′, thus proving that V ⊗ ψ '
V ′. �

The proposition implies that the group of unramified characters acts on the set of irreducible
cuspidal representations by tensor product.

Definition 4.4.3. A cuspidal component is an orbit of the set of irreducible cuspidal represen-
tations under this action.

Theorem 4.4.4. Let D be a cuspidal component. Then D splits Rep(G), in the sense that
for any V ∈ Rep(G), there exists a decomposition V ' VD ⊕ V ⊥D such that the Jordan-Holder
factors of VD are contained in D, and the Jordan-Holder factors of V ⊥D do not intersect D.

Proof. Consider any V ∈ Rep(G). By definition, all the representations in D become isomorphic
to some ρ upon restriction to Go; moreover, by Theorem 4.3.5, ρ is compact, hence semisimple
and, since [G : ZGo] <∞, of finite length; in other words, ρ ' ρ1 ⊕ . . . ρr. By Theorem 3.3.1,
there is a splitting V ' VD ⊕ V ⊥D , as Go-representations, where the Jordan-Holder factors of
VD lie in {ρ1, . . . , ρr} and no Jordan-Holder factor of V ⊥D is isomorphic to ρ. It remains to see
that this decomposition is preserved by G, which is evident, as the G-action simply permutes
the ρi. �
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