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1 Lecture 1

1.1 Quasi-Characters of Profinite Groups

Let G be a topological (Hausdorff) group. We say that G is profinite if it is totally disconnected and compact.
Equivalently, G is the inverse limit of finite groups. Then, G has a basis of neighbourhoods at identity given
by finite index open normal subgroups. We say that G is locally profinite if G is locally compact and totally
disconnected. Then, any compact subgroup of G would be profinite.

Theorem 1.1. Let G be a topological group and H, H1, H2 be topological subgroups. The following are true.

a) H is open if and only if G/H is discrete. If H is open, it is closed.

b) If H is finite index and closed, it is open.

c) The map G→ G/H is open.

d) If H is compact, the map G→ G/H is closed.

e) G/H is Hausdorff if and only if H is closed.

f) If G is profinite, H is compact open, then G/H is finite index.

g) (van Dantzig) If G is locally profinite, compact open subgroups form a basis of neighbourhoods of identity
and compact subgroups are contained in open compact subgroups.

Example 1.2. Qp, Q×p ,A∞Q , (A∞Q )×,GLn(Qp) are locally profinite while Zp, Z×p , Ẑ,GLn(Ẑ) are profinite. Simi-
larly for local fields.

Let F be a local field, OF its ring of integers and V a vector space of dimension n over F . An OF -lattice L
in V is a finitely generated OF submodule such that L⊗OF

F = V .

Proposition 1.3. If L is a OF -lattice in V , then L is free of rank n over OF .

Proof. By minimality.

Remark 1.4. A lattice for a non-archimedean local field is not discrete.

Definition 1.5. Let G be a locally profinite group. A continuous homormophism ψ : G→ C× is said to be a
quasi-character. If the image lies in S1 ⊂ C×, it is said to be a unitary-character.

Proposition 1.6. A homomorphism ψ : G→ C× of abstract groups is continuous if and only if kerψ is open
in G. Moreover, if G is a union of compact open subgroups, then ψ is necessarily unitary.

Proof. By topology, this follows. Choose an open neighbourhood around 1 ∈ S1, and look at preimage etc.

Example 1.7. If F is a local field, all quasi-characters F → C× are unitary.

Example 1.8. Let ω be a uniformizer. Then, F× ∼= O×F × ωZ. Thus, a (quasi)-character of F× is a character
of O×F which is unitary by compactness, and a number associated to ω ∈ ωZ. For instance, | · | : F× → C× is a
non-unitary character.
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1.1.1 Duality Theorems

Let G be an abelian topological group which is locally compact. We define Ĝ to be unitary/Pontryagin dual of
G i.e. the group of unitary characters of G under the compact open topology. We have the following general
statement.

Proposition 1.9 (Pontryagin duality). The pairing G× Ĝ→ S1 induces an isomorphism G→ ̂̂
G.

Additive Characters Let F be a local field. Then all characters of F are unitary.

Definition 1.10. Let ψ ∈ F̂ , ψ 6= 1. The conductor or level of ψ is the smallest c such that (ωc) ∈ kerψ.

Proposition 1.11 (Additve Pontryagin Duality). Let a ∈ F and ψ ∈ F̂ , ψ 6= 1 of conductor c.

1) The map aψ : x 7→ ψ(ax) is a character of F . If a 6= 0, the character aψ has conductor c− vf (a).

2) The pairing F × F → S1 given by (a, x) 7→ ψ(ax) = aψ(x) induces an isomorphism F ∼= F̂ .

Proof. Boring.

Example 1.12. How do we produce one non-trivial character for local fields F? For Qp, take ψp : Qp → S1

given by ψ0(α) = e2πi(α mod Zp). This gives an isomorphism

Qp/Zp ∼= Z(p∞)

, of topological groups, where Z(p∞) is the (discrete) Prufer p-group. For finite extensions F/Qp, we can take
ψF = ψ0 ◦ TrF/Q.

1.1.2 Multiplicative Characters

Let’s look at F×. We notice that O×F is the unique maximal compact open subgroup of F , in sharp contrast
with F .

Definition 1.13. Let ψ : F× → C× be a character. The conductor or level of ψ is defined to be the smallest
c such that 1 + ωcOF ∈ kerψ.

Since O×F /(1+ωcOF ) is a finite abelian group, the characters of F× can be determined by the corresponding
characters of finite groups.

1.2 Smooth Representations and Induction

Let G be a locally profinite group and (π, V ) be a representation of G.

Definition 1.14. We say that a representation (π, V ) of G is smooth if for all v ∈ V , there is a compact open
Kv ⊂ G such that π(x)v = v for all x ∈ Kv. If V is smooth, U is a G-stable subspace, then U and V/U are
smooth. We say that (π, V ) is admissible if the space V K is finite dimensional for all compact open subgroups
of G. We say that (π, V ) is irreducible if V has no G-stable subspace U . A homomorphism (π1, V1)→ (π2, V2)
is a linear map f : V1 → V2 such that it twists the πi. Then, the class of smooth representations of G forms an
abelian category Rep(G).
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Example 1.15. A 1-dimensional representation is smooth if and only if it is given by a continuous character.

Example 1.16. If G is profinite, and (π, V ) is smooth and irreducible, then V is finite dimensional. Indeed,
V =

⋃
K V

K where K is compact open. Each v ∈ V non-zero lies in some V K , and {π(g)v : g ∈ G/K} spans
V . We know that (G : K) is finite and K ′ =

⋂
g∈G/K gKg

−1 is open normal which acts trivially on V . So, V

is irreducible over G/K ′ which is finite, and hence is finite dimensional.

We can prove that the usual theorem of V being a sum of irreducible G-subspace is equivalent to it being
a direct sum, which is equivalent to showing that every G-stable subspace of V has a G-complement. So, are
representations of G-semisimple?

Lemma 1.17. If G is a locally profinite group and (π, V ) be a smooth representation of G. If K is a compact
open subgroup of G, V is a direct sum of irreducible K-subspaces.

Proof. Each v ∈ V is stabilized by some open normal subgroup K ′ of K and the K-span W of v is finite
dimensional on which K ′ acts trivially. So, W is a representation of K/K ′, and so is a sum of irreducible K
subspaces. Now note that v ∈ V was arbitrary.

If G is a locally profinite group, K compact open, then let K̂ denote the set of equivalence classes of
irreducible smooth representations of K. For each ρ ∈ K̂, we can talk about the ρ-isotypic component of a
smooth representation (π, V ) of G i.e. sum of all irreducible K-subspaces of V of class ρ.

Proposition 1.18. Let (π, V ) be smooth over G and K compact open.

1) V is a direct sum of its K-isotypic components.

2) Taking isotypic components behaves well under homomorphisms i.e. if f : V →W is in Rep(G), then

f(V ρ) ⊂W ρ and W ρ ∩ f(V ) = f(V ρ)

Corollary 1.19. Let U → V →W be a sequence of G-spaces. Then, it is exact if and only if

UK → V K →WK

is exact.

Proof. By the well-behavedness of taking isotypic component, we can check the conditions of exactness on
K-invariant subspaces.

Corollary 1.20. Let K be a compact open subgroup of a locally profinite group G and (π, V ) a smooth repre-
sentation of G. Let V (K) be the linear span of

{v − π(k)v | v ∈ V, h ∈ H} .

Then, with

V (K) =
⊕

ρ∈K̂,ρ 6=1

V ρ

and V (K) is the unique K-complement of V K in V .
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Proof. The sum W = V ρ with ρ non-trivial is a K-complement of V K in V . So, we have an exact sequence

0→W → V → V K → 0

and V (K) is contained in any K-map V → V K . So, W ⊇ V (K). However, if U is irreducible over K and in the
class of ρ 6= 1, U(K) = U , since U is irreducible and U is not trivial. Since this is true for non-trivial isotypic
component V ρ = V ρ(K) ⊂ V (K).

1.2.1 Induction

Definition 1.21. Let G be a locally profinite group, and H a closed subgroup. Let (σ,W ) be a smooth
representation of H. Let X be the C-vector space of functions f : G→W such that

1) f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G i.e. it’s σ-semilinear.

2) there is a compact open subgroup Kf of G such that f(gx) = f(g), so f is constant on gK for all g ∈ G.

We let Σ : G→ AutC(X) to be the map

Σ(g)(f) : x 7→ f(xg) for g, x ∈ G.

The pair (Σ, X) provides a smooth representation of G, with smoothness holding because of 2). We write

(Σ, X) = IndGH σ

So, we have a functor IndGH : Rep(H)→ Rep(G). There is a canonical H-homomorphism

ασ : IndGH σ →W

f 7→ f(1),

which is indeed a H-homomorphism because of 1). We also have a functor ResGH : Rep(G)→ Rep(H) which is
the stupid functor.

Proposition 1.22 (Frobenius Reciprocity). Let G be locally profinite, H a closed subgroup, (π, V ) a smooth
representation of G and (σ,W ) a smooth representation of H. Then, we have a functorial bijeciton

HomG(π, IndGH σ)→ HomH(π, σ)

φ 7→ ασ ◦ φ
So, basically,

IndGH a ResGH .

Proof. We can construct an explicit inverse for a H-homomoprhism f : V → W . Let f∗ : V → Indσ be such
that for v ∈ V , f∗(v) = g 7→ g(π(g)v)). Then, f 7→ f∗ is the inverse.

Proposition 1.23. The functor IndGH is additive and exact.

Proof. Too lazy to read it.
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1.2.2 Compact Induction

Let H, which an open subgroup of a locally profinite group G. Then, H is closed and is thus locally profinite.
Let (σ,W ) be a smooth representation of H. We can consider Xc to be the space of compactly supported
functions modulo H i.e. functions f ∈ X such that the image of suppf in H G is compact. The space Xc is
stable under the action of G and provides another smooth representation of G. So, we get a functor

c- IndGH : Rep(H)→ Rep(G)

which we refer to as compact induction. It is additive and exact, and we have a canonical G-embedding

c- IndGH σ → IndGH σ

because Xc ⊂ X. This provides an equivalence of categories if and only if G/H is compact.

Again, we have a H-homomophism
ασc : W → c- IndGH σ

w 7→ fw

where fw ∈ Xc is supported in H and fw(h) = σ(h)w for h ∈ H. If H is open, the map αcσ : W → c- IndGH is a
H-isomorphism onto those functions f ∈ Xc such that suppf ⊂ H.

Proposition 1.24. Let G be a locally profinite group, H a closed subgroup. The compact induction functor is
exact and addtive. If moreover, H is open, then

HomG(c- Indσ, π)→ HomH(σ, π)

f 7→ f ◦ αcσ
is a functorial isomorphism. Thus,

c- IndGH ` ResGH .

Proof. Again, too lazy to read it.

1.2.3 Central Character

Note 1.25. Hypothesis We will assume that G/K is countable for all compact open K whenever it makes
life easy.

Lemma 1.26 (Schur). If (π, V ) is smooth and irreducible representation of G, then EndG(V ) = C.

Proof. If φ ∈ EndG(V ), φ 6= 0, then the image and kernel of φ are both G-subspaces of V , and thus so
φ is bijective and invertible. So, EndG(V ) is a complex division algebra. Now, dimC(V ) is countable, and
thus EndG(V ) has countable dimension over C. However, φ /∈ C, then φ is transcendental over C, and thus
C(φ) ⊂ EndG(V ) is uncountable. Thus, there is no such φ, and EndG(V ) = C.

Corollary 1.27. Let (π, V ) be an irreducible smooth representation of G. The center Z of G acts via a character
ωπ : Z → C×.
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Proof. We have a map Z → G→ AutC(V ), and since Z is in the center, the image actually lies in EndG(V ) = C.
Thus, there is a homomorphism ωπ : Z → C× such that π(z)v = ωπ(z)v for z ∈ Z, v ∈ V . If K is a compact open
of G such that V K 6= 0, the ωπ is trivial on K∩Z, as V K has trivial K-action. Thus, ωπ is a quasi-character.

Corollary 1.28. If G is abelian, then any irreducible smooth representation of G is one-dimensional.

Definition 1.29. The character ωπ : Z → C× is called the central character of π.

1.2.4 Semisimplicity

Proposition 1.30. Let G be a locally profinite group and H be an open subgroup of G of finite index.

1) If (π, V ) is a smooth representation of G, then V is semisimple if and only if it is H-semisimple.

2) Let (σ,W ) be a semisimple smooth representation of H. Then, IndGH σ is G-semisimple.

Proof. Essentially uses finiteness of the index of H in G.

1.2.5 Smooth/Contryagin Duality

Let (π, V ) be a smooth representation of G. Let V ∗ = HomC(V,C). Let

V ∗ × V → C

(v∗, v) 7→ 〈v∗, v〉

Then, V ∗ has an induced representation

〈π∗(g)v∗, v〉 = 〈v∗, π(g−1)v〉 g ∈ G, v∗ ∈ V ∗, v ∈ V

If V ∗ were smooth, it would be a union of (V ∗)K . It is not in general, so we let

V̌ = (V ∗)∞ =
⋃
K

(V ∗)K .

Then, V̌ is G-stable and is smooth.

Definition 1.31. Let p̌i : G→ AutC(V̌ ) be the representation on the subspace V̌ ⊂ V ∗. We call (π̌, V̌ ) to be
the contragradient or smooht dual of (π, V ). We have a pairing

〈·, ·〉 : V̌ × V → C

and
〈π̌(g)v̌, v〉 = 〈v̌, π(g−1)v〉 g ∈ G, v̌ ∈ V̌ , v ∈ V

Proposition 1.32. V̌ K ∼= (V K)∗
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Proof. We know that V K is the unique K-complement of V (K) = {v − π(k)v|v ∈ V, k ∈ K}. If v̌ ∈ V̌ is fixed
under K, we must have

〈v̌, V (K)〉 = 0

by definition of V (K). Indeed,
〈v̌, v〉 = 〈π̌v̌, v〉 = 〈v̌, π(k−1)v〉

Then, v̌ ∈ V̌ K is determined by its action on V K . One can extend any linear functional on V K , which is a
function of V = V K ⊕ V (K) to an element of V̌ K by declaring it to be trivial on V (K).

Corollary 1.33. Let (π, V ) be a smooth representation of G, v ∈ V , v 6= 0. There exists a v̌ ∈ V̌ such that
〈v̌, v〉 6= 0.

Proof. Let v ∈ V . There is some K such that v ∈ V K . Then, by previous result, (V̌ )K = (V K)∗ and we can
choose something from here that pairs to something non-zero with v.

Let (π, V ) be a smooth representation of G. There is a canonical map

δ : V → ˇ̌V

given by
〈δ(v), v̌〉V̌ = 〈v̌, v〉V v ∈ V, V̌ ∈ V

which is injective because of the last corollary.

Proposition 1.34. The map δ : V → ˇ̌V is an isomorphism if and only if (π, V ) is admissible.

Proof. The maps δK : V K → ˇ̌V K for each compact open group K of G are surjective if and only if δ is. Now,
δK is the usual double dual map

V K → (V K)∗∗

which is surjective if and only if dimC V
K is finite.

1.3 Integration Theory

Let C∞c (G) be the space of functions that are locally constant and have compact support. So, if f ∈ C∞c (G),
there must exist K1,K2 (by local constancy) compact open subgroups (by support condition) of G such that
f is constant on K1g and gK2. Thus, we see that if K = K1 ∩ K2, then f is a finite linear combination of
characteristic functions of the double cosets KgK.

Definition 1.35. Let
λ : G× C∞c (G)→ C∞c (G) (g, f) 7→ f(g−1x)

ρ : G× C∞c (G)→ C∞c (G) (x, f) 7→ f(xg)

be the left and right translation actions respectively. These are smooth representations of G.

8



1.3.1 Haar Integrals

Definition 1.36. A right Haar integral on G is a non-zero linear functional

I : C∞c (G)→ C

such that

1) I(ρgf) = I(f) for all g ∈ G, f ∈ C∞c (G)

2) I(f) ≥ 0 for any f ∈ C∞c (g), f ≥ 0.

Similarly, one can define a left Haar integral.

Proposition 1.37. There exists a right Haar integral I : C∞c (G) → C. Any other right Haar integral is a a
multiple of I by some constant c > 0. Thus,

dimC HomG(C∞c (G),C) = 1.

where we consider C∞c (G) as a G-rep via right translation.

Remark 1.38. HomG(Cc∞(G),C) is not the set of all Haar integrals.

Proof. Key idea is to see that KC∞c (G) considered as a G-rep via Λ is a G-rep via ρ. Then, use compact
induction.

Corollary 1.39. For f ∈ C∞c (G), define f̌ ∈ C∞c (G) by f̌(g) = f(g−1) for g ∈ G. Then, the functional

I ′ : C∞c (G)→ C

I ′(f) = I(f̌)

is a left Haar integral. Any other left Haar integral is of the form cI ′, with c > 0.

1.3.2 Haar Measures

Let I be a left Haar integral and S a compact open subgroup. We define

µG(S) = I(1S).

Then, µG(S) > 0 and µG(gS) = µG(S) for g ∈ G.

Definition 1.40. We refer µG as the left Haar measure. We denote the relation between Haar integrals and
Haar measures by

I(f) =

∫
G

f(g)dµG(g)

for f ∈ C∞c (G). We say that G is unimodular if any left Haar integral on G is a right Haar integral.
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Using similar techniques, we can define Haar integrals on C∞c (G,V ) = C∞c (G) ⊗C V i.e if φ ∈ C∞c (G;V ),
we can write

IV (φ) =

∫
G

φ(g)dµG(g).

Let µG be a left Haar measure on G. For g ∈ G, consider

C∞c (G)→ C

f 7→
∫
G

f(xg)dµG(x).

This is also a left Haar integral, and thus there is a unique δG(g) ∈ R×+ such that

δG(g)

∫
G

f(xg)dµG(x) =

∫
G

f(x)dµG(x)

for all f ∈ C∞c (G). The function δG : G → R×+ is a homomorphism. If we take f to be the charactersitic
function of a compact open, then δG is trivial on K. Thus, δG is a quasi-character. It is trivial if and only if δG
is unimodular, since

f 7→
∫
G

δG(x)−1f(x)dµG(x)

for f ∈ C∞c is a right Haar integral.

Remark 1.41. We can make the mnemonic

dµG(xg) = δG(g)dµG(x)

Definition 1.42. We call δG the module of G.

1.3.3 Duality

1.4 Hecke Algebra

Let G be a locally profinite group. Smooth representations (π, V ) of G are algebras not over C[G], but what is
called the Hecke algebra.

Hypothesis G is unimodular.

Fix a Haar measure µ on G. For f1 ∈ f2 ∈ C∞c (G), we define

(f1 ∗ f2)(g) =

∫
G

f1(x)f2(x−1g)dµ(x).

Indeed, the function (x, g) 7→ f1(x)f2(x−1g) ∈ C∞c (G×G) which implies that f1 ∗ f2 ∈ C∞c (G). We can check
that

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2)f3.

Then, the pair
H(G) = (C∞c (G), ∗)

is an associative C-algebra, which we call the Hecke algebra of G. Notice that H(G) has no unit element unless
G is discrete, but it has a lot of idempotents.
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Remark 1.43. If we replace µ with ν = cµ, then the corresponding Hecke algebras Hµ(G) and Hnu(G) are
isomorphic via f 7→ c−1f for f ∈ Hµ(G).

Example 1.44. Let G be discrete. The counting measure is then a Haar measure on G. Let’s us write∫
G

f(g)dµ(g) =
∑
g∈G

f(g)

Thus, the map
H(G)→ C[G]

f 7→
∑
g∈G

f(g)g

is an isomorphism.

1.4.1 Idempotents

For each compact open K of G, define eK ∈ HG to be µ(K))−1
1K .

Proposition 1.45. The following are true.

1) eK ∗ eK = eK

2) f ∈ HG, satisfies eK ∗ f = f ⇐⇒ f(kg) = f(g) for all k ∈ K, g ∈ G

3) The space eK ∗ HG is a sub-algebra of HG with unit element eK .

Proof. We have

eK ∗ eK =

∫
G

eK(x)eK(x−1g)dµ(x)

=

∫
K

eK(x)eK(x−1g)dµ(x) +

∫
G\K

eK(x)eK(x−1g)dµ(x)

= µK · µ−2
K · 1K

= eK

Similar concrete computations can show that eK ∗ f is left K-invariant.

1.4.2 Smooth modules over Hecke Algebra

Let M be a left HG module, where we denote the multiplication by ∗ i.e. f ∈ HG, m ∈M , (f,m) 7→ f ∗m.

Definition 1.46. We say that a module M is smooth if HG ∗M = M .
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Since
HG =

⋃
K

(eK ∗ H(G) ∗ eK)

M is smooth if and only if for every m ∈M , there is a compact open subgroup K of G such that eK ∗m = m.
We define HomHG(M1,M2) for smooth modules M1,M2 in the obvious way. Then, we get a category HG−mod
of smooth modules.

Definition 1.47. Let (π, V ) be a smooth G-rep. For f ∈ HG, v ∈ V , let

π(f)v =

∫
G

f(g)π(g) v dµ(g) ∈ C∞c (G;V ).

Proposition 1.48. Let (π, V ) be a smooth representation of G. Then, under

(f, v) 7→ π(f)v f ∈ H(G), v ∈ V

gives V the structure of a smooth HG-module. Conversely, given a smooth HG-module M , there is a unique
G-homomorphism π : G→ AutC(M) given by

π(f)m = f ∗m

such that (π,M) is a smooth representation of G and this construction behaves well with respect to homomor-
phisms. So, in particular the category Rep(G) is then equivalent to H(G)−mod category.

Proof. We need to check that π(f1 ∗ f2) = π(f1)π(f2) for f1, f2 ∈ H(G). This can be done formally. The fact
that V is smooth as a H(G)-module can be deduced from the fact that if K is compact open in G that fixed v
and f (under right translation), then

π(f)v = µ(K)
∑

g∈G/K

f(g)π(g)v

which is a finite sum since f has compact support. From this, we see that

π(eK)v = v

and hence, V is smooth as a HG-module.

1.4.3 Subalgebras

Let K be a compact open subgroup. Then, eK∗HG∗eK is the space of K bi-invariant locally constant compactly
supported functions on G with ∗ as involution. It has an identity. We denote this sub-algebra by H(G,K).

Lemma 1.49. Let (π, V ) be a smooth rep. The operator π(eK) is the K-projection V → VK with kernel V (K).
The space V K is a H(G,K)-module on which eK acts as identity.

Proof. For v ∈ V , k ∈ K, we have

π(k)π(eK)v = π(eK)π(k)v = π(eKv)

by writing down all the integrals. Thus π(eK) is a K-map V → V K . As π(eK)v = v for all v ∈ V K , the
image of π(eK) : V → V K is all of V K . Now, π(eK) is an idempotent, and π(eK) annihilates the unique K
-complement V (K) of V K .
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Proposition 1.50. 1) Let (π, V ) be a smooth irreducible representation of G. Then, V K is either 0 or a
simple H(G,K) module.

2) The process (π, V ) 7→ V K induces a bijection between the following sets of objects{
equivalence classes of irre smooth reps(π, V )ofGwithV K 6= 0

}
and

{isomorhpism classes of simple H(G,K)-modules}

Corollary 1.51. Let (π, V ) be a smooth representation of V such that V 6= 0. Then, (π, V ) is irreducible if
and only if for just one hence any compact open subgroup K of G, the space V K is either zero or a simple
H(G,K)-module.

Proof. =⇒ is obvious. Suppose (π, V )is not irreducible, and let U ( V be a G-stable subspace. Set W = V/U .
There is a compact open subgroup K of G such that both spaces WK and UK are non-zero. The sequence

0→ UK → V K →WK → 0

is exact and is an exact sequence of H(G,K)-modules. Thus, V K is non-zero and non-simple over H(G,K).

13
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