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1 Lecture 1

1.1 Quasi-Characters of Profinite Groups

Let G be a topological (Hausdorff) group. We say that G is profinite if it is totally disconnected and compact.
Equivalently, G is the inverse limit of finite groups. Then, G has a basis of neighbourhoods at identity given
by finite index open normal subgroups. We say that G is locally profinite if G is locally compact and totally
disconnected. Then, any compact subgroup of G would be profinite.

Theorem 1.1. Let G be a topological group and H, Hy, Hy be topological subgroups. The following are true.

a) H is open if and only if G/H is discrete. If H is open, it is closed.
b) If H is finite index and closed, it is open.

¢) The map G — G/H is open.

d) If H is compact, the map G — G/H is closed.

e) G/H is Hausdorff if and only if H is closed.

f) If G is profinite, H is compact open, then G/H is finite index.

g) (van Dantzig) If G is locally profinite, compact open subgroups form a basis of neighbourhoods of identity
and compact subgroups are contained in open compact subgroups.

Example 1.2. Q,, Q, A%, (AZ)*, GL,(Q,) are locally profinite while Z,, Z,, Z GLn(z) are profinite. Simi-
larly for local fields.

Let F be a local field, Op its ring of integers and V' a vector space of dimension n over F. An Op-lattice L
in V is a finitely generated Op submodule such that L ®p, F'=V.

Proposition 1.3. If L is a Op-lattice in V, then L is free of rank n over Op.

Proof. By minimality. O
Remark 1.4. A lattice for a non-archimedean local field is not discrete.

Definition 1.5. Let G be a locally profinite group. A continuous homormophism ¢ : G — C* is said to be a
quasi-character. If the image lies in ST C C*, it is said to be a unitary-character.

Proposition 1.6. A homomorphism ¢ : G — C* of abstract groups is continuous if and only if ker v is open
in G. Moreover, if G is a union of compact open subgroups, then 1 is necessarily unitary.

Proof. By topology, this follows. Choose an open neighbourhood around 1 € S!, and look at preimage etc. [J
Example 1.7. If F is a local field, all quasi-characters F' — C* are unitary.

Example 1.8. Let w be a uniformizer. Then, F* = Of X w?. Thus, a (quasi)-character of F'* is a character
of OF which is unitary by compactness, and a number associated to w € w”. For instance, |-|: F* — C* is a
non-unitary character.



1.1.1 Duality Theorems

Let G be an abelian topological group which is locally compact. We define G to be unitary /Pontryagin dual of
G i.e. the group of unitary characters of G under the compact open topology. We have the following general
statement.

Proposition 1.9 (Pontryagin duality). The pairing G x G — St induces an isomorphism G — G.

Additive Characters Let F' be a local field. Then all characters of F' are unitary.
Definition 1.10. Let ¢ € 1/7\, ¥ # 1. The conductor or level of 1 is the smallest ¢ such that (w®) € ker 1.
Proposition 1.11 (Additve Pontryagin Duality). Let a € F and ¢ € ﬁ, ¥ # 1 of conductor c.

1) The map ayp : x — (ax) is a character of F. If a # 0, the character aip has conductor ¢ — vs(a).

2) The pairing F x F — St given by (a,x) — ¥ (ax) = ab(x) induces an isomorphism F = F.

Proof. Boring. O

Example 1.12. How do we produce one non-trivial character for local fields F? For Q,, take 1, : Q, — S*
given by 1)g(a) = > mod Zp) " Thig gives an isomorphism

Qp/Zp = Z(p™)
, of topological groups, where Z(p>) is the (discrete) Prufer p-group. For finite extensions F'/Q,, we can take
Yr =g o Trpq.

1.1.2 Multiplicative Characters

Let’s look at F'*. We notice that O is the unique maximal compact open subgroup of F', in sharp contrast
with F'.

Definition 1.13. Let ¢ : F* — C* be a character. The conductor or level of v is defined to be the smallest
¢ such that 1 4+ w°Op € ker .

Since OF /(1+w°Op) is a finite abelian group, the characters of F* can be determined by the corresponding
characters of finite groups.

1.2 Smooth Representations and Induction

Let G be a locally profinite group and (m, V') be a representation of G.

Definition 1.14. We say that a representation (m, V') of G is smooth if for all v € V', there is a compact open
K, C G such that m(x)v = v for all x € K,. If V is smooth, U is a G-stable subspace, then U and V/U are
smooth. We say that (m, V) is admissible if the space VX is finite dimensional for all compact open subgroups
of G. We say that (m, V) is érreducible if V has no G-stable subspace U. A homomorphism (w1, V1) — (w2, V2)
is a linear map f : Vi — V5 such that it twists the m;. Then, the class of smooth representations of G forms an
abelian category Rep(G).



Example 1.15. A 1-dimensional representation is smooth if and only if it is given by a continuous character.

Example 1.16. If G is profinite, and (7, V) is smooth and irreducible, then V is finite dimensional. Indeed,
V =g VE where K is compact open. Each v € V non-zero lies in some VX, and {n(g)v: g € G/K} spans
V. We know that (G : K) is finite and K’ = ﬂgEG/K gK g~ is open normal which acts trivially on V. So, V'
is irreducible over G/K’ which is finite, and hence is finite dimensional.

We can prove that the usual theorem of V' being a sum of irreducible G-subspace is equivalent to it being
a direct sum, which is equivalent to showing that every G-stable subspace of V has a G-complement. So, are
representations of G-semisimple?

Lemma 1.17. If G is a locally profinite group and (m, V') be a smooth representation of G. If K is a compact
open subgroup of G, V is a direct sum of irreducible K -subspaces.

Proof. Each v € V is stabilized by some open normal subgroup K’ of K and the K-span W of v is finite
dimensional on which K’ acts trivially. So, W is a representation of K/K’, and so is a sum of irreducible K
subspaces. Now note that v € V was arbitrary. O

If G is a locally profinite group, K compact open, then let K denote the set of equivalence classes of
irreducible smooth representations of K. For each p € K, we can talk about the p-isotypic component of a
smooth representation (m, V) of G i.e. sum of all irreducible K-subspaces of V' of class p.

Proposition 1.18. Let (m, V) be smooth over G and K compact open.

1) V is a direct sum of its K-isotypic components.
2) Taking isotypic components behaves well under homomorphisms i.e. if f :' V — W is in Rep(G), then
F(VP) C WP and WP N f(V) = f(VP)
Corollary 1.19. Let U -V — W be a sequence of G-spaces. Then, it is exact if and only if
Uk 5 vE 5wk

s exact.

Proof. By the well-behavedness of taking isotypic component, we can check the conditions of exactness on
K-invariant subspaces. O

Corollary 1.20. Let K be a compact open subgroup of a locally profinite group G and (w,V) a smooth repre-
sentation of G. Let V(K be the linear span of

{v—nw(k)v|lveV,he H}.

Then, with
VIK)= & v*
pER p#1

and V (K) is the unique K -complement of VE in V.



Proof. The sum W = V? with p non-trivial is a K-complement of VXin V. So, we have an exact sequence
0=W =V VK0

and V(K) is contained in any K-map V — VE. So, W D V(K). However, if U is irreducible over K and in the
class of p £ 1, U(K) = U, since U is irreducible and U is not trivial. Since this is true for non-trivial isotypic
component V? =V?(K) C V(K).

O

1.2.1 Induction

Definition 1.21. Let G be a locally profinite group, and H a closed subgroup. Let (o,WW) be a smooth
representation of H. Let X be the C-vector space of functions f : G — W such that

1) f(hg) =o(h)f(g) for all h € H, g € G i.e. it’s o-semilinear.

2) there is a compact open subgroup Ky of G such that f(gz) = f(g), so f is constant on gK for all g € G.

We let ¥ : G — Aute(X) to be the map
S(9)(f) :x— f(zg) for g,x € G.
The pair (X, X) provides a smooth representation of G, with smoothness holding because of 2). We write

(2,X) =Ind$ o

So, we have a functor Ind% : Rep(H) — Rep(G). There is a canonical H-homomorphism
oy :IndS o - W
fe=fQ,

which is indeed a H-homomorphism because of 1). We also have a functor Res$ : Rep(G) — Rep(H) which is
the stupid functor.

Proposition 1.22 (Frobenius Reciprocity). Let G be locally profinite, H a closed subgroup, (w, V) a smooth
representation of G and (o, W) a smooth representation of H. Then, we have a functorial bijeciton

Homg (7, Ind$ 0) — Homp (7, 0)
¢—= s 00

So, basically,
Indg a Resg .

Proof. We can construct an explicit inverse for a H-homomoprhism f : V — W. Let f. : V — Indo be such
that for v € V, fi(v) =g~ g(n(g)v)). Then, f — f, is the inverse. O

Proposition 1.23. The functor Indg 1s additive and exact.

Proof. Too lazy to read it. O



1.2.2 Compact Induction

Let H, which an open subgroup of a locally profinite group G. Then, H is closed and is thus locally profinite.
Let (o, W) be a smooth representation of H. We can consider X. to be the space of compactly supported
functions modulo H i.e. functions f € X such that the image of suppf in H G is compact. The space X, is
stable under the action of G and provides another smooth representation of G. So, we get a functor

c-Ind$, : Rep(H) — Rep(G)
which we refer to as compact induction. It is additive and exact, and we have a canonical G-embedding
c-nd$ o — d% o
because X, C X. This provides an equivalence of categories if and only if G/H is compact.

Again, we have a H-homomophism
al W — ¢-Ind§ o

w— fu

where f,, € X, is supported in H and f,(h) = o(h)w for h € H. If H is open, the map af : W — ¢-Ind% is a
H-isomorphism onto those functions f € X, such that suppf C H.

Proposition 1.24. Let G be a locally profinite group, H a closed subgroup. The compact induction functor is
exact and addtive. If moreover, H is open, then

Homg(c-Ind o, 7) — Hompg (o, )

frfoag

is a functorial isomorphism. Thus,
c- Indg F Resg .

Proof. Again, too lazy to read it. O

1.2.3 Central Character

Note 1.25. Hypothesis We will assume that G/K is countable for all compact open K whenever it makes
life easy.

Lemma 1.26 (Schur). If (7, V) is smooth and irreducible representation of G, then Endg (V) = C.

Proof. If ¢ € Endg(V), ¢ # 0, then the image and kernel of ¢ are both G-subspaces of V, and thus so
¢ is bijective and invertible. So, Endg (V) is a complex division algebra. Now, dim¢ (V) is countable, and
thus Endg (V) has countable dimension over C. However, ¢ ¢ C, then ¢ is transcendental over C, and thus
C(¢) € Endg(V) is uncountable. Thus, there is no such ¢, and Endg (V) = C. O

Corollary 1.27. Let (m,V) be an irreducible smooth representation of G. The center Z of G acts via a character
wy : Z — C*.



Proof. We have amap Z — G — Autc(V), and since Z is in the center, the image actually lies in Endg (V) = C.
Thus, there is a homomorphism w, : Z — C* such that 7(z)v = wy(2)vfor z € Z, v € V. If K is a compact open
of G such that VX # 0, the w, is trivial on KNZ, as VX has trivial K-action. Thus, w, is a quasi-character. [

Corollary 1.28. If G is abelian, then any irreducible smooth representation of G is one-dimensional.

Definition 1.29. The character w, : Z — C* is called the central character of .

1.2.4 Semisimplicity
Proposition 1.30. Let G be a locally profinite group and H be an open subgroup of G of finite index.

1) If (w, V) is a smooth representation of G, then V is semisimple if and only if it is H-semisimple.

2) Let (o, W) be a semisimple smooth representation of H. Then, Indg o is G-semisimple.

Proof. Essentially uses finiteness of the index of H in G. O

1.2.5 Smooth/Contryagin Duality

Let (7, V) be a smooth representation of G. Let V* = Hom¢(V, C). Let
VixV=C
(v*,v) = (v*,v)
Then, V* has an induced representation
(T*(g)v*,v) = (v*, (g~ )v) geGv eViveV
If V* were smooth, it would be a union of (V*)X. It is not in general, so we let
V= (e =JwvnHE
K
Then, V is G-stable and is smooth.

Definition 1.31. Let pi : G — Autc(V) be the representation on the subspace V' C V*. We call (7, V) to be
the contragradient or smooht dual of (m,V). We have a pairing

(,):VxV-=>C

and 5
(#(g)v,v) = (0,m(g"")w) geGveV,veV

Proposition 1.32. VK = (V)



Proof. We know that VX is the unique K-complement of V(K) = {v — n(k)v|v € V,k € K}. If © € V is fixed
under K, we must have

(0, V(K)) =0

by definition of V(K). Indeed,
(0,0) = (70,0) = (@, m(k~")v)

Then, o € VX is determined by its action on V. One can extend any linear functional on V' which is a
function of V = VE @ V(K) to an element of VX by declaring it to be trivial on V(K). O

Corollary 1.33. Let (r,V) be a smooth representation of G, v € V, v # 0. There exists a © € V such that
(0,v) # 0.

Proof. Let v € V. There is some K such that v € V. Then, by previous result, (V)% = (VE)x and we can
choose something from here that pairs to something non-zero with v. O

Let (7, V) be a smooth representation of G. There is a canonical map
5.V oV
given by 5
(0(v),0)y = (@,v)y veV,VeV
which is injective because of the last corollary.

Proposition 1.34. The map 6 : V — V is an isomorphism if and only if (7, V') is admissible.

Proof. The maps 6% : VK — VE for each compact open group K of G are surjective if and only if § is. Now,

6% is the usual double dual map
VK N (VK)**

which is surjective if and only if dimc V¥ is finite. O

1.3 Integration Theory

Let C°(G) be the space of functions that are locally constant and have compact support. So, if f € CX(G),
there must exist Ky, Ko (by local constancy) compact open subgroups (by support condition) of G such that
f is constant on K;¢g and gKs. Thus, we see that if K = K; N Ks, then f is a finite linear combination of
characteristic functions of the double cosets K¢gK.

Definition 1.35. Let
A:GxCE(G) = C(G)  (9,0) = flg™ )

p:GxCX(G) = C2(G)  (x,f)— f(zg)

be the left and right translation actions respectively. These are smooth representations of G.



1.3.1 Haar Integrals

Definition 1.36. A right Haar integral on G is a non-zero linear functional
I:C*(G)—>C

such that

1) I(pgf) =1(f) forall g € G, f € C(G)
2) I(f) > 0 for any f € C°(g), f > 0.

Similarly, one can define a left Haar integral.

Proposition 1.37. There exists a right Haar integral I : C°(G) — C. Any other right Haar integral is a a
multiple of I by some constant ¢ > 0. Thus,

dim¢ Homg (CS°(G),C) = 1.
where we consider C°(G) as a G-rep via right translation.

Remark 1.38. Homg(CS (G),C) is not the set of all Haar integrals.

Proof. Key idea is to see that XC°(G) considered as a G-rep via A is a G-rep via p. Then, use compact
induction. O

Corollary 1.39. For f € C°(Q), define f € C2(G) by f(g) = f(g~") for g € G. Then, the functional
I':C*G)—C

I'(f) =1(f)
is a left Haar integral. Any other left Haar integral is of the form cI’, with ¢ > 0.

1.3.2 Haar Measures

Let I be a left Haar integral and S a compact open subgroup. We define
ug(S) = I(]ls).
Then, pua(S) > 0 and pg(9S) = pe(S) for g € G.

Definition 1.40. We refer ug as the left Haar measure. We denote the relation between Haar integrals and
Haar measures by

I(f) = /G F(9)dnc()

for f € C*(G). We say that G is unimodular if any left Haar integral on G is a right Haar integral.



Using similar techniques, we can define Haar integrals on C°(G,V) = C°(G) @c V ie if ¢ € CX(G; V),
we can write

Iy (¢) = /G 6(9)duc (9)-

Let pug be a left Haar measure on G. For g € G, consider

CE(G)—C

f»—)/Gf(acg)d,ug(at).

This is also a left Haar integral, and thus there is a unique dg(g) € R such that
bo(o) [ Fea)dncta) = | F@)dnta)

for all f € C2°(G). The function é¢ : G — R is a homomorphism. If we take f to be the charactersitic
function of a compact open, then d¢ is trivial on K. Thus, d¢ is a quasi-character. It is trivial if and only if 04
is unimodular, since

£ | dota) f@)do(a)
for f € C2° is a right Haar integral.
Remark 1.41. We can make the mnemonic
dpg(rg) = dc(g9)duc ()
Definition 1.42. We call § the module of G.

1.3.3 Duality

1.4 Hecke Algebra

Let G be a locally profinite group. Smooth representations (7, V) of G are algebras not over C[G], but what is
called the Hecke algebra.

Hypothesis G is unimodular.

Fix a Haar measure p on G. For f1 € fy € C°(G), we define
(e 1)) = [ Fla)fala™ g)du(o).
G

Indeed, the function (x,g) — fi(x)f2(z71g) € C°(G x G) which implies that f; * fo € C>°(G). We can check
that
fix(faxf3) = (fix f2)fs.

Then, the pair
H(G) = (CZ(G), %)

is an associative C-algebra, which we call the Hecke algebra of G. Notice that H(G) has no unit element unless
G is discrete, but it has a lot of idempotents.

10



Remark 1.43. If we replace p with v = cpu, then the corresponding Hecke algebras H,,(G) and H,,(G) are
isomorphic via f ¢! f for f € H,(G).

Example 1.44. Let G be discrete. The counting measure is then a Haar measure on G. Let’s us write

/G F@)du() =3 £(9)

geG

Thus, the map
H(G) — C[G]

f=> f9)g

geqG

is an isomorphism.

1.4.1 Idempotents

For each compact open K of G, define ex € HG to be u(K)) 11k.

Proposition 1.45. The following are true.

1) ex xeg =ex
2) [ € HG, satisfies e x f = f <= f(kg) = f(g) forallk e K, g € G

3) The space ex x HG is a sub-algebra of HG with unit element e .
Proof. We have
eK * e = / ex(x)ex(x™tg)du(r)
G

- / exc(@)ex (& g)du(z) + / ex(@)ex (= g)du(x)
K

G\K
= e 1 e

:eK

Similar concrete computations can show that ex * f is left K-invariant. O

1.4.2 Smooth modules over Hecke Algebra

Let M be a left HG module, where we denote the multiplication by * i.e. f € HG, m € M, (f,m)— f*m.

Definition 1.46. We say that a module M is smooth if HG « M = M.

11



Since

HG = | (ex * H(G) * ex)
K

M is smooth if and only if for every m € M, there is a compact open subgroup K of GG such that ex xm = m.
We define Homy; (M7, Ms) for smooth modules My, M5 in the obvious way. Then, we get a category HG —mod
of smooth modules.

Definition 1.47. Let (7, V) be a smooth G-rep. For f € HG, v € V| let

(v = /G f(g)(g) vdulg) € (G V).

Proposition 1.48. Let (7, V) be a smooth representation of G. Then, under
(f,v) = n(f)v feH(G),veV

gives V' the structure of a smooth HG-module. Conversely, given a smooth HG-module M, there is a unique
G-homomorphism 7 : G — Autc(M) given by

m(fi)m=fxm

such that (w, M) is a smooth representation of G and this construction behaves well with respect to homomor-
phisms. So, in particular the category Rep(G) is then equivalent to H(G) — mod category.

Proof. We need to check that 7(f; * f2) = w(f1)m(f2) for f1, fo € H(G). This can be done formally. The fact
that V' is smooth as a H(G)-module can be deduced from the fact that if K is compact open in G that fixed v
and f (under right translation), then

w(flo=nuK) D flgm(gw

geG/K
which is a finite sum since f has compact support. From this, we see that
m(ex)v =0

and hence, V is smooth as a HG-module. O

1.4.3 Subalgebras

Let K be a compact open subgroup. Then, ey *HG*eg is the space of K bi-invariant locally constant compactly
supported functions on G with * as involution. It has an identity. We denote this sub-algebra by H(G, K).

Lemma 1.49. Let (7, V') be a smooth rep. The operator w(ex) is the K-projection V' — Vi with kernel V(K).
The space VE is a H(G, K)-module on which e acts as identity.

Proof. For v e V, k € K, we have

m(k)m(ex)v = w(ex)m(k)v = 7(exv)

by writing down all the integrals. Thus 7(ex) is a K-map V — VE. As m(ex)v = v for all v € VX the
image of m(ex) : V — V& is all of VX, Now, m(eg) is an idempotent, and 7(ex ) annihilates the unique K
-complement V(K) of VX. O

12



Proposition 1.50. 1) Let (m,V) be a smooth irreducible representation of G. Then, VX is either 0 or a
simple H(G, K) module.

2) The process (7, V) — VE induces a bijection between the following sets of objects

{equivalence classes of irre smooth reps(m, V)owaithVK =+ 0}

and
{isomorhpism classes of simple H(G, K)-modules}

Corollary 1.51. Let (m,V) be a smooth representation of V' such that V £ 0. Then, (m,V) is irreducible if
and only if for just one hence any compact open subgroup K of G, the space VE is either zero or a simple
H(G, K)-module.

Proof. = is obvious. Suppose (7, V)is not irreducible, and let U C V be a G-stable subspace. Set W = V/U.
There is a compact open subgroup K of G such that both spaces WX and U are non-zero. The sequence

0-UK S vE S wK 50

is exact and is an exact sequence of H(G, K)-modules. Thus, V¥ is non-zero and non-simple over H#(G, K). O

13
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