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1 Definition of CADO and Basic Properties

The chiral algebra of differential operators DG,κ was introduced as a substitute for D(G(K)) (which we know
doesn’t exist), in the sense that D-modules over the loop group were defined to be chiral modules over DG,κ
supported at a point. Conjecturally, modules over CADO are the KM-nondegenerate part of DMod(G(K)).
(Details on this?)

Here is the definition of CADO, paralleling that of a CDO. Throughout this note, fix X a curve, x ∈ X
a point on it, C = OG⊗OX for G a reductive group. If M is a right D-module, M l is its corresponding left
D-module given by M ⊗Ω−1

X . All levels will be centered around the critical level.
Recall that J(C)l = SymOX (DX ⊗OX C)/ ker(Sym(C) → C) is the function of the jet of C, and ΘC =

TC ⊗C(J(C)l⊗OX DX) is the Lie-* algebra of vector fields, where TC denotes vertical vector fields on Spec(C).
It is a commutative module over the chiral algebra J(C), and it itself also admits a Lie-* algebra structure
over which J(C) is a module. In fact we have J(C)l⊗Lg ∼= ΘC .

Chiral Envelopes The obvious forgetful functor from chiral algebra to Lie-* algebra admits a left adjoint
called the chiral envelope or the universal enveloping algebra, and is denoted L 7→ U(L). I mentioned a few
basic properties of this construction during the talk, more precisely, its fiber, its PBW filtration and the
correspondence between continuous modules over DR(D∗x, L) and chiral modules over U(L) supported at x;
readers can refer to [AG02] for a quick summary.

Definition 1. A CADO D over X is a chiral algebra endowed with a filtration Di, i ≥ 0 such that:

1. {·, ·} : j∗j
∗(Di �Dj)→ ∆!(Di+j), {·, ·} : Di �Dj → ∆!(Di+j−1);

2. D0 = J(C);

3. There exists a map ΘC → D1/D0 that is simutaneously a Lie-* algebra map and a chiral J(C)-module
map, and intertwines the Lie-* module structure of J(C) on both sides.

4. The map SymJ(C)lΘ
l
C → gr(D)l is an isomorphism.

A distinguished property of CADO is that it admits both a left and a right embedding of the chiral
Kac-Moody algebra into it. Let us first define that: write Lg = g⊗DX , L̃g,κ = ΩX ⊕Lg. The Lie-* algebra
structure on the latter is given by extending that of the former by the map Lg � Lg → ∆!(ΩX) induced by

the map g⊗ g
κ−→ C

17→ dx∧dy
(x−y)2−−−−−−→ Γ(X ×X,∆!(ΩX)). Let Ag,κ denote the chiral envelope of L̃g,κ with the two

copies of ΩX (that of the unit and that from L̃g,κ) identified, then this is our chiral Kac-Moody algebra. In
particular, (Ag,κ)x = Vg,κ is our usual Vacuum Weyl module.

Roughly speaking this is the chiral version of the usual construction: replace ΩX with C, J(C) with
OG, Lg with g((t)) and you get the usual construction.1 In the same spirit, recall that the usual ring of
differential operators DG can be expressed as U(OG ⊕ g)/ ker(Sym(OG) → OG) is given the obvious Lie
algebra structure. The chiral version essentially copies it: we consider J(C) ⊕ Lg, with the following Lie-*
algebra structure:

1How do I make this a precise statement?
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1. Lg� Lg → ∆!(Lg) is inherited;

2. Lg� Lg → ∆!(J(C)) is given by Lg� Lg → ∆!(ΩX) followed by the unit;

3. Lg� J(C)→ ∆!(J(C)) is the Lie-* algebra structure of J(C) over Lg ⊂ ΘC .

Then we define DG,κ to be the chiral envelope of this Lie-* algebra mod out the ideal generated by
ker Sym(J(C))→ J(C). The filtration is given by the image of j∗j

∗(J(C) � U(J(C)⊕ Lg)i) under the chiral
bracket.

Proposition 1 (Theorem 3.4 of [AG02]). Dg,κ is a CADO.

Proof. Requirement 1 and 2 are basically by design. 3 comes from the factorization of j∗j
∗(J(C) � Lg) →

∆!(D1
G,κ)→ ∆!(D1

G,κ/D0
G,κ) through ∆!(J(C)⊗!L}) = ∆!(ΘC). The map in 4 is surjective by design and both

sides are flat on X so it suffices to check on the fiber. In particular, let us denote by Bg,κ the fiber (vacuum

module) of Dg,κ at x; it equals Indĝκ
g[[t]]OG[[t]]. Thus we have LHS ' SymOG[[t]]

((g((t))/g[[t]])⊗OG[[t]]) '
OG[[t]]⊗(g((t))/g[[t]]) = gr(Dg,κ)x.

Note that by construction we have an embedding Ag,κ into Dg,κ, which we’ll denote by l and call the left
embedding (because it corresponds to the embedding of g as left invariant vector fields). The main result of
[AG02] is the following:

Proposition 2. There is another embedding r : Ag,−κ → Dg,κ that chiral-commutes with l and corresponds
to the embedding of g as right-invariant vector fields.

The construction is technical and is not terribly enlightening, and all conditions are checked explicitly
via chiral algebra computations. We note that these two embeddings admit a double centralizer theorem:

Proposition 3 (Lemma 5.2 of [FG04]). The image of l(Ag,κ) and that of r(Ag,−κ) are centralizers of each
other in DG,κ.

Proof. By symmetry it suffices to show im(l) and Z(im(r)) are the same. One inclusion is just chiral
commutativity. To show the other inclusion it suffices to check on fibers; more precisely, the left embedding
on the fiber level corresponds to Indĝκ

g[[t]]⊕C(C) ↪→ Indĝκ
g[[t]]⊕C(OG(O)) coming from C ↪→OG(O) and the right

g[[t]] ⊂ ĝ structure comes from acting on OG(O) i.e. as right g[[t]] module it is free over OG(O). It suffices

to check that the vacuum is in Dg[[t]]
x ⊃ Dĝ

x (because the action is adjoint action) which is obvious from this
description.

Now let M be a module over DG,κ supported at x. Here is a more concrete description of what it is:

Proposition 4 (Prop 6.2 of [AG02]). This data is the same as continuous actions of OG(K) and ĝκ on the

vector space V = i!x(M)[1], such that for any ζ ∈ ĝκ, f ∈ OG(K), we have [ζ, f ] = Lieζ(f) (where we use left
embedding) as operators on V .

By the right embedding described above, we see that any such module automatically comes with a ĝ−κ
action from the right that is compatible with OG(K) action via right embedding. This can be explained more
succinctly with the Tate extension, as was done in Section 21 of [FG06] which we reproduce below.

1.1 Non-Chiral Version of the Two Embeddings

For the next part, write g for g((t)) and G for G((t)) for sanity. There are some topological vector space
issues regarding different completions which I’m going to ignore.

In particular, let us fix a module V with the said action above at the zero level. Then we’d expect an
ĝ2κ0

action from the right on the same module V .

Proposition 5. ĝ2κ0
is the Baer negative of the canonical Tate extension.
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Recall that Cl = Cl(g, g∗) is the (filtered, graded) Clifford algebra associated to g⊕ g∗, and Cl20 fits into
a central extension:

0→ C→ Cl20 → g⊗ g∗ = gl(g)→ 0

Pull back along g→ gl(g) (by adjoint on itself) we obtain the Tate extension. It is clear that the 2-cocycle
for the short exact sequence above is the Killing form.

Fix any S a representation of Cl and let M = V ⊗S. First we have Cl acting on M by acting on S,
which we’ll denote by ir : Cl→ EndM . This action extends to an action of arbitrary elements of T (G) and
T ∗(G) by e.g. seeing T (G) ' OG⊗ g using left-invariant vector fields and let it act on V and S respectively.

This action we’ll write as i : T (G), T ∗(G) → EndM . Now use g
−adjoint−−−−−→ OG⊗ g

inv⊗ 1−−−−→ OG⊗ g and let it
act on V and S respectively, we get another map il : Cl→ EndM .

Let us define another action T (G) ' OG⊗ g on M (in reality need to define it for RHS first them
see it lifts to completion), which we’ll write as Lie : T (G) → EndM . It ought to extend (in the sense
of x 7→ 1⊗x) the left Lie algebra action Lie : g → EndM by acting on V . In particular, it is given by

(f ⊗x)v = f · Lie(x) · v + i(df) · il(x) · v for f ∈ OG, x ∈ g, v ∈M . Now take g
−adjoint−−−−−→ OG⊗ g followed by

Lie we get another action Lier : g→ EndM .

Finally, define ĝ2κ0
→ EndM as ĝ2κ0

→ g
Lier−−−→ EndM minus ĝ2κ0

' gTate → Cl20 → EndS → EndM
(where the isomorphism is as vector spaces). This can be checked to be a Lie algebra action, and has the
following properties (all as endomorphisms on M):

1. Its commutator with f ∈ OG is the right Lie derivative of f ;

2. It commutes with Lie(x) ∈ EndV → EndM for all x ∈ g;

3. It commutes with ir.

The last part means that this action preserves V , so this is the expected ĝTate action from the right.

1.2 Regularity

Now recall that there is a canonical pairing 〈·, ·〉 : ĝκ-modG(O) × ĝ−κ-modG(O) → Vect given by (M,N) 7→
H
∞
2 (g((t)), G[[t]],M ⊗N). The main point is that the vacuum module of CADO is an universal object

among the G(O)-integrable objects with respect to this pairing:

Proposition 6. 〈M,Bg,κ〉 = M for all M ∈ ĝκ-modG(O).

Let Vλg,κ be the ĝκ module induced from the Weyl module of highest weight λ, for λ ∈ Λ+. It is
G(O)-integrable. At a generic level, we can say more explicitly what Bg,κ looks like:

Proposition 7. At a generic level κ, we have Bg,κ =
⊕
λ∈Λ+

Vλg,κ⊗Vτ(λ)
g,−κ.

Proof. We have V λ⊗V τ(λ) → OG → OG(O), which induces a ĝκ⊗ ĝ−κ module homomorphism Vλg,κ⊗Vτ(λ)
g,−κ →

Bg,κ. Affine Weyls are generically irreducible, so this map is injective. Then it suffices to conclude by com-
paring characters.

It was also checked in [AG] that for any normal subgroup K ⊂ G(O) of finite codimension, the category
of K-integrable modules over the CADO coincide with what we expect, i.e. the category of D-modules on
K\G((t)).

2 Structure at Critical Level

Now let us specialize to the critical level. At the critical level, CADO becomes a ĝκ0
-bimodule, and l, r

become two embeddings of Ag,κ0
. Let zg denote the chiral center of Ag,κ0

, then we get two embeddings
of it into CADO. By the double centralizer theorem, their images coincide and is the intersection of the

3



images of l and r. By general chiral algebra, zg,x, the fiber at x, is isomorphic to End(Vg,κ0) and is therefore
isomorphic to Fun(OpLG(Dx)) by Feigin-Frenkel.

Further, let Zx denote the completed version of zx, which corresponds to functions of opers on the

punctured disc; let Zunr
x correspond to functions on Opunr

LG =
⋃
λ∈Λ+

Opunr,λ
LG

, the ind-scheme of unramified

opers; and let zreg,λ
g correspond to the closed subscheme Opreg,λ

LG
, which is the reduced part of Opunr,λ

LG
. The

main result of [FG10] is that zreg,λ
g = End(Vλg,κ0

). Now back to our main story.

Proposition 8 (Theorem 5.4 of [FG04]). The two embeddings of zg into Dg,κ0 differ by a Cartan involution.

The structure of CADO at the critical level is more complicated. First note that Bg,κ0 is G(O) integrable
as a ĝκ0 -bimodule. By what we saw last time, its support is contained in unramified opers, and we obtain a

decomposition Bg,κ0 =
⊕
λ∈Λ+

Bλg,κ0
by support. (By moving the point, this gives a D-module decomposition

Dg,κ0
=

⊕
λ∈Λ+

Dλg,κ0
.) The map Vλg,κ0

⊗Vτ(λ)
g,κ0 → Bg,κ0

obviously factors through Bλg,κ0
; moreover, by the

proposition above, it also factors through Vλg,κ0
⊗zregg

Vτ(λ)
g,κ0 . (I believe the action translates to zg action on

the right–haven’t actually checked.) In other words, we lose some degree of freedom because the left and
right actions of automorphisms now coincide. It turns out this was restored by the infinitesimal data of
Opreg,λ

LG
⊂ Opunr,λ

LG
, which is unsurprising from a geometric point of view.

The precise statement is as follows. Let I be the ideal of Opreg,λ
LG

⊂ Opunr,λ
LG

, and let N = (I/I2)∗ be the

normal bundle. Filtrate Bλg,κ0
by the kernel of Ik+1, k ≥ 0,

Proposition 9. Vλg,κ0
⊗zregg

Vτ(λ)
g,κ0
∼= F 0(Bλg,κ0

), and grn(Bλg,κ0
) ∼= F 0(Bλg,κ0

)⊗zreg,λg
Symn

zreg,λg
(N).

The proof of this uses renormalized chiral algebroid Aren,τ
g . Let me briefly summarize why this was

involved.

Some Mumbles about Renormalized Algebra The proof of Beilinson-Bernstein localization of affine
Grassmannian at negative / irrational level uses the crucial fact that the vacuum module is projective in
ĝκ module; at critical level this is false, and it is only projective in the “regular part”. So the exactness
statement boils down to check that the forget functor from CADO module to ĝ-module, followed by the
!-pullback functor to the regular support, is exact (everything is G(O)-integrable). The key fact here are the
following:

1. That chiral modules over Aren,τ
g admit a Kashiwara-style theorem (Theorem 6.15 of [FG04]);

2. That the two embeddings of Ag,κ0 factor through Aren,τ
g (Theorem 5.4 of [FG04]);

3. and that the universal enveloping algebra of Aren,τ
g is D0

g,κ0
(Prop 9.7 of [FG04]).

Then the exactness statement comes from pulling back on the renormalized algebroid module level.
Back to our description of CADO: D0

g,κ0
carries a PBW-type filtration, whose zeroth graded piece is

Ag,κ0
⊗zg Ag,κ0

and first graded piece is Ω1(zg), which is the chiral version of the conormal bundle. By the

Kashiwara-style theorem, Bλg,κ0
is the induced chiral module from F 0(Bλg,κ0

) by D0
g,κ0

, and the PBW filtration

induces another filtration F on Bλg,κ0
, for which it is immediate that grn(Bλg,κ0

) ∼= F 0(Bλg,κ0
)⊗zreg,λg

Symn
zreg,λg

(N),

so it remains to check that F and F are the same filtration. This comes down to the fact that the coisson
structure on zg is elliptic (more precisely that its anchor map is injective)—anyone want to explain this?

It remains to check the first part of the description above. First check the map is injective: if it were
not, then the kernel would admit a ĝκ0 map from the vacuum module. We contradict this by observing
that Homĝκ(Vλ,Vλ⊗zreg,λg

Vτ(λ))→ Homĝκ(Vλ,Bλ) is an iso. This follows from the following: first, Vτ(λ) →
Homĝκ(Vλ,Vλ⊗zreg,λg

Vτ(λ)) is an iso because the latter is End(Vλ)⊗Vτ(λ) (using flatness) which is simply

Vτ(λ) by [FG10]’s main result. Next, composition of those two functions is the following iso:

Proposition 10. Homĝκ0
(Vλg,κ0

,Bg,κ0
) = Vτ(λ)

g,κ0 (in the derived sense).
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Proof.

Homĝκ0
(Vλg,κ0

,Bg,κ0
) =

HomG(O)(V
λ,Bg,κ0

) = ((V λ)∗⊗Bg,κ0
)G(O) = (V τ(λ)⊗Bg,κ0

)G(O) =

HomG(O)(k, V
τ(λ)⊗Bg,κ0

) = 〈Vτ(λ)
g,κ0 ,Bg,κ0

〉 = Vτ(λ)
g,κ0 .

To conclude the theorem, we consider G×G×Gm action on Bg,κ0 , coming from the two G(O) actions and

the “rotation operator” L0 = −t d
dt

. It suffices to count the multiplicity of any rep V µ1 ⊗V µ2 ⊗Cd within

Bg,κ0 is the same as that within Vλ⊗zreg Vτ(λ)⊗Symzreg(N) = Vλ⊗zreg Vτ(λ)⊗Symzreg(Ω1(zreg)). We know

that zreg is a polynomial algebra so this is same multiplicity as Vλ⊗Vτ(λ). Since we have a flat family based
on κ for vacuum modules, the statement follows from deforming away from the critical level.
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