NOTES ON [AB] (AFFINE FLAGS AND THE DUAL GROUP)

K.J.C.

1. Goals

Let k be an algebraically closed field, over which the reductive group G is defined. Let e be an algebraically closed field of characteristic 0, over which the Landlands dual group \check{G} is defined. We shall consider sheaf theories according the choices of k and e: for an algebro-geometric object \mathcal{Y} defined over k:

- If $k = \overline{\mathbb{F}}_p$, $e = \overline{\mathbb{Q}}_l$, we can consider $\operatorname{Shv}^l(\mathcal{Y})$, which is the ind-completion of (non-cocomplete) DG-category¹ of l-adic constructible sheaves on \mathcal{Y} .
- If $k = \mathbb{C}, e = \mathbb{C}$, we can consider $\mathrm{DMod}(\mathcal{Y})$.
- If $k = \mathbb{C}$, we can consider $\operatorname{Shv}^{an}(\mathcal{Y})$, which is the ind-completion of (non-cocomplete) DG-category of constructible sheaves with coefficient e for the analytic topology on \mathcal{Y}^{an} .

We shall just write Shv for any of the above cases.

The first goal of this talk is to construct an exact (commuting with finite colimits and limits in the ∞ -categorical sense) monoidal functor

$$\Phi_{\text{diag}}: \text{Coh}(\check{\mathfrak{n}}/\check{B}) \to \text{Shv}(\text{Fl})^{I,lc},$$

where the $\operatorname{Shv}(\operatorname{Fl})^{I,lc}$ is the full subcategory of $\operatorname{Shv}(\operatorname{Fl})^I$ consisting of objects whose image in $\operatorname{Shv}(\operatorname{Fl})$ is compact (i.e. locally compact). It's known that the canonical involution on $\operatorname{Shv}(\operatorname{Fl})^I$ fixes this full subcategory. It's also known that the convolution preserves this full subcategory. The ind-completion of $\operatorname{Shv}(\operatorname{Fl})^{I,lc}$ is denoted by $\operatorname{Shv}(\operatorname{Fl})^I_{\operatorname{ren}}$, whose difference with $\operatorname{Shv}(\operatorname{Fl})^I$ is supported at cohomological degree of $-\infty$.

We warn that Φ_{diag} is not t-exact.

Note that $\check{\mathfrak{n}}/\check{B}\simeq \widetilde{\check{\mathbb{N}}}/\check{G}$, and we have a diagonal embedding $\widetilde{\check{\mathbb{N}}}/\check{G}\hookrightarrow \operatorname{St}_{\check{G}}$. The above $\Phi_{\operatorname{diag}}$ will be the restriction of the desired equivalence

$$\Phi: \operatorname{Coh}(\operatorname{St}_{\check{G}}/\check{G}) \simeq \operatorname{Shv}(\operatorname{Fl})^{I,lc}$$

along the diagonal embedding $\widetilde{\tilde{N}} \hookrightarrow \operatorname{St}_{\tilde{G}}$. We warn that here $\operatorname{St}_{\tilde{G}}$ is the derived Steinberg variety.

The second goal of this talk is to describe an equivalence

$$\operatorname{Coh}(\check{\mathfrak{n}}/\check{B}) \simeq \operatorname{Shv}(\operatorname{Fl})^{(I_u^-,\chi),lc}$$

compatible with the monoidal action of $\operatorname{Coh}(\check{\mathfrak{n}}/\check{B})$ on both sides. Here I^- is the opposite Iwahori, and I^-_{μ} is its unipotent radical. $\chi:I^-\to N^-\to\mathbb{G}_a$ is the generic character, and $\operatorname{Shv}(\operatorname{Fl})^{(I^-_u;\chi)}$ is the full subcategory of $\operatorname{Shv}(\operatorname{Fl})$ consisting of objects which are equivariant for I^-_u against the character χ . The $\operatorname{Coh}(\check{\mathfrak{n}}/\check{B})$ -action on LHS is given by tensor product, while its action on RHS is induced by $\Phi_{\operatorname{diag}}$ and the convolution action.

 $\operatorname{Shv}(\operatorname{Fl})^{(I_u^-,\chi),lc}$ is known as the Iwahori-Whittaker category. It's also called anti-spherical category because its de-categorify is the anti-spherical representation of the Iwahori-Hecke algebra.

We warn that the above equivalence is only right t-exact. In fact, the canonical t-structure on RHS corresponds to the *exotic* t-structure on LHS developed by R.B.

1

 $^{^{1}}$ I admit that I didn't check whether *all* the results in [AB] on triangulated categories can be generalized to ∞ -categories. Therefore I refused to sign my real name.

2. Construction of $\Phi_{\rm diag}$

- 2.1. The plan. Recall we have a closed embedding $\tilde{\tilde{N}} \hookrightarrow \check{G}/\check{B} \times \check{\mathfrak{g}}$. Hence in order to construct Φ_{diag} , it's enough to first construct an exact monoidal functor out of the category $\operatorname{Coh}(\check{G}\setminus(\check{G}/\check{B}\times\check{\mathfrak{g}}))$ and then provide certain vanishing data. This can be further separated into steps
 - Step 1: Construct an exact monoidal functor out of $Coh(pt/\tilde{T})$;
 - Step 2: Upgrade the above functor to an exact monoidal functor out of $Coh(pt/\mathring{B})$;
 - Step 3: Construct an exact monoidal functor out of $Coh(\check{G}\setminus\check{\mathfrak{g}})$;
 - Step 4: Combining the above functors to an exact monoidal functor $Coh(\check{G}\setminus(\check{G}/\check{B}\times\check{\mathfrak{g}}))$ and factors it through $Coh(\check{G}\backslash \check{N})$.

The construction in step 1 is given by the Wakimoto sheaves; that in step 2 uses the central sheaves and their filtrations by Wakimoto sheaves; that in step 3 uses the central sheaves and their monodromy; that in step 4 is provided by certain vanishing property of the monodromy on the graded piece of the central sheaves.

2.2. Step 1: the Wakimoto sheaves. The first step is to construct the functor

$$\operatorname{Coh}(\operatorname{pt}/\check{T}) \to \operatorname{Shv}(\operatorname{Fl})^{I,lc}.$$

For each coweight $\lambda \in \Lambda$ of T, we need to construct an object J_{λ} in $Shv(Fl)^{I,lc}$ and isomorphisms $J_{\lambda} \star J_{\mu} \simeq J_{\lambda+\mu}$ with higher compatibilities.

Recall as a set $I\backslash G(K)/I\simeq W^{\mathrm{aff}}$, where W^{aff} is the extended affine Weyl group (i.e. we have $0 \to \Lambda \to W^{\text{aff}} \to W \to 1$). For each $w \in W^{\text{aff}}$, consider the corresponding orbit Fl_w , which is smooth of dimension l(w), where l(w) is the length of w. Define $j_{!,w}$ and $j_{*,w}$ respectively to be the !-extension and *-extension of the IC-sheaf on Fl_w to Fl, viewed as objects in $Shv(Fl)^{I,lc}$.

Exercise 2.2.1. ² (1) $j_{w,*}, j_{w,!}$ is contained in Shv(Fl)^{I,lc, \heartsuit}

- (2) $j_{w_1,!} \star j_{w_2,*}$ and $j_{w_1,*} \star j_{w_2,!}$ are contained in $\operatorname{Shv}(\operatorname{Fl})^{I,lc,\heartsuit}$. (3) If $l(w_1w_2) = l(w_1)l(w_2)$, then there are canonical isomorphisms $j_{w_1,*} \star j_{w_2,*} \simeq j_{w_1w_2,*}$ and $j_{w_1,!} \star j_{w_2,!} \simeq j_{w_1w_2,!}$ satisfy higher compatibilies.
 - $(4) j_{w,*} \star j_{w^{-1},!} \simeq \delta_e \simeq j_{w,!} \star j_{w^{-1},*}.$

(Hints: For (1), one needs the fact that $Fl_w \hookrightarrow Fl$ is an affine locally closed embedding. For (2), one needs $\mathrm{Fl}_{w_1} \overset{\sim}{\times} \mathrm{Fl} \to \mathrm{Fl}$ and $\mathrm{Fl} \overset{\sim}{\times} \mathrm{Fl}_{w_2} \to \mathrm{Fl}$ are both affine. For (3), one needs $\mathrm{Fl}_{w_1} \overset{\sim}{\times} \mathrm{Fl}_{w_2} \simeq \mathrm{Fl}_{w_1 w_2}$. Also, in an abelian category, higher compatibilities can be checked in finite time. For (4), do induction on l(w). When l(w) = 1, do direct calculation on $\mathbb{P}^1 \widetilde{\times} \mathbb{P}^1$.)

It's known $l:W\to\mathbb{Z}$ is additive when restricted to the dominant coweight lattice Λ^+ . Hence the following assignment is well-defined: $J_{\lambda} := j_{\lambda,*}$ when $\lambda \in \Lambda^+$; $J_{\lambda} := j_{\lambda,!}$ when $-\lambda \in \Lambda^+$; and $J_{\lambda} := j_{-\mu_1,!} \star j_{\mu_2,*}$ when $\lambda = \mu_2 - \mu_1$ with $\mu_1, \mu_2 \in \Lambda^+$ (such μ_1, μ_2 always exist).

By formal nonsense, there exists an unique monoidal exact and t-exact functor

$$\operatorname{Coh}(\operatorname{pt}/\check{T}) \to \operatorname{Shv}(\operatorname{Fl})^{I,lc}, \ e_{\lambda} \mapsto J_{\lambda},$$

where e_{λ} is the 1-dimensional representation of \check{T} with character λ .

2.3. Step 2: the Drinfeld-Plucker formalism. Now we want to upgrade the monoidal functor

(2.1)
$$\operatorname{Coh}(\operatorname{pt}/\check{T}) \to \operatorname{Shv}(\operatorname{Fl})^{I,lc}, \ e_{\lambda} \mapsto J_{\lambda}.$$

to a monoidal functor

$$\operatorname{Coh}(\operatorname{pt}/\check{B}) \to \operatorname{Shv}(\operatorname{Fl})^{I,lc}$$
.

Note that $\check{B} = \check{G} \setminus (\check{G}/\check{U})/\check{T}$. Hence it's enough to provide another monoidal functor $\mathrm{Coh}(\mathrm{pt}/\check{G}) \to$ $Shv(Fl)^{I,lc}$, equipped with certain compatibilities with (2.1). Thanks to D.G., we do have an exact and t-exact monoidal functor (the central sheaf construction)

$$\mathcal{Z}: \mathrm{Coh}(\mathrm{pt}/\check{G}) \to \mathrm{Shv}(\mathrm{Fl})^{I,lc},$$

²I believe exercises should never exist in any math writing. Therefore I refused to sign my real name.

and the classical study on Hecke algebras suggests that it is the pursured functor.

Note that \mathcal{Z} can be upgraded to an E_2 -functor from $\mathrm{Coh}(\mathrm{pt}/\check{G})$ to the Drinfeld center of $\mathrm{Shv}(\mathrm{Fl})^I_{\mathrm{ren}}$. Informally, this means we have functorial isomorphisms $\mathcal{Z}(V) \star \mathcal{F} \simeq \mathcal{F} \star \mathcal{Z}(V)$ satisfying higher compatibilities. This additional structure on \mathcal{Z} allows one to define an exact and t-exact monoidal functor

(2.2)
$$\operatorname{Coh}(\check{G}\backslash \operatorname{pt}/\check{T}) \to \operatorname{Shv}(\operatorname{Fl})^{I,lc}, (V,\lambda) \mapsto \mathcal{Z}(V) \star J_{\lambda}.$$

Let $F: \operatorname{Coh}(\check{G}\backslash\operatorname{pt}/\check{T}) \to \mathcal{C}$ be an exact monoidal functor. It remains to spell out the required (addition data of) compatibilities to upgrade it to an exact monoidal functor $\operatorname{Coh}(\operatorname{pt}/\check{B}) \to \mathcal{C}$, which is just some formal nonsense, and then provide them for (2.2), which is some geometry representation theory. The formal nonsense is known as the Drinfeld-Plucker formalism, which we describe below.

In practice, it is easier to first extend F to an exact monoidal functor $\operatorname{Coh}(\check{G}\backslash\check{G}/\check{U}/\check{T})$, where \check{G}/\check{U} is the affine closure of \check{G}/\check{U} , and then verify that the result factors through $\operatorname{Coh}(\check{G}\backslash(\check{G}/\check{U})/\check{T})$. Note that such a factorization is a property rather than additional data.

Exercise 2.3.1. (1) Let V^{λ} be the highest weight module of \check{G} . Then as commutative algebra objects in $\operatorname{Rep}(\check{G} \times \check{T})$, we have³

$$\mathcal{O}_{\underline{\tilde{G}}/\tilde{U}} \simeq \bigoplus_{\Lambda^+} V^{\lambda} \otimes e^{-\lambda},$$

where the multiplication is given by

$$(V^{\lambda} \otimes e^{-\lambda}) \otimes (V^{\mu} \otimes e^{-\mu}) \simeq (V^{\lambda} \otimes V^{\mu}) \otimes e^{-\lambda - \mu} \to V^{\lambda + \mu} \otimes e^{-\lambda - \mu}.$$

(2) For $\lambda \in \Lambda^+$, write \mathcal{V}^{λ} for the image of V^{λ} under the pullback along $\check{G} \setminus \check{\underline{G}}/\check{\underline{U}}/\check{T} \to \check{G} \setminus \mathrm{pt}$, and \mathcal{L}^{λ} for the image of e^{λ} under the pullback along $\check{G} \setminus \check{\underline{G}}/\check{\underline{U}}/\check{T} \to \mathrm{pt}/\check{T}$. Check that the canonical morphisms

$$\mathbf{b}^{\lambda}: \mathcal{V}^{\lambda} \simeq \bigoplus_{\mu \in \Lambda^{+}} (V^{\lambda} \otimes V^{\mu}) \otimes e^{-\mu} \to \bigoplus_{\mu \in \Lambda^{+}} (V^{\lambda + \mu}) \otimes e^{-\mu} \to \bigoplus_{\mu \in \Lambda^{+}} V^{\mu} \otimes e^{-\mu + \lambda} \simeq \mathcal{L}^{\lambda}$$

satisfying the Plucker condition

$$\begin{array}{ccc} \mathcal{V}^{\lambda+\mu} & \longrightarrow \mathcal{V}^{\lambda} \otimes \mathcal{V}^{\mu} \\ \downarrow_{\mathbf{b}^{\lambda+\mu}} & \downarrow_{\mathbf{b}^{\lambda} \otimes \mathbf{b}^{\mu}} \\ \mathcal{L}^{\lambda+\mu} & \stackrel{\simeq}{\longrightarrow} \mathcal{L}^{\lambda} \otimes \mathcal{L}^{\mu} \end{array}$$

and higher compatibilities.

(3) Let $d(\lambda) = \dim(V^{\lambda})$. Show that the Koszul complex associated to \mathbf{b}^{λ} :

$$0 \to \wedge^{d(\lambda)} \mathcal{V}^{\lambda} \to \wedge^{d(\lambda)-1} \mathcal{V}^{\lambda} \otimes \mathcal{L}^{\lambda} \to \cdots \to \mathcal{V}^{\lambda} \otimes \mathcal{L}^{(d(\lambda)-1)\lambda} \to \mathcal{L}^{d(\lambda)\lambda} \to 0$$

vanishes when restricted to the open $\check{G}\setminus (\check{G}/\check{U})/\check{T}$.

By the exercise, in order to extend F to an exact monoidal functor $\operatorname{Coh}(\check{G}\backslash \check{G}/\check{U}/\check{T}) \to \mathcal{C}$, we at least need to construct morphisms $\mathbf{b}^{\lambda}: F(V^{\lambda}) \to F(e^{\lambda})$ satisfying Plucker conditions and certain higher compatibilities. If we want this extension to factor through $\operatorname{Coh}(\operatorname{pt}/B)$, we at least need to check that the Koszul complexes associated to the above \mathbf{b}^{λ} vanish.

It turns out that the above necessary data and conditions are also sufficient⁴. It remains to provide them for our functor (2.2).

Exercise 2.3.2. For $\lambda \in \Lambda^+$, write \mathcal{Z}_{λ} for $\mathcal{Z}(V^{\lambda})$.

(1) As objects in $Shv(Fl_{\lambda})^{I,lc}$, we have a canonical isomorphism

$$j_{\lambda}^*(\mathcal{Z}_{\lambda}) \simeq \mathrm{IC}_{\mathrm{Fl}_{\lambda}}$$
.

(2) By (1), we have a canonical isomorphism between spaces⁵

$$\operatorname{Maps}_{\operatorname{Shv}(\operatorname{Fl})^{I}, lc}(\mathfrak{Z}_{\lambda}, J_{\lambda}) \simeq e.$$

³The negative sign comes from the convention that T acts leftly on G/U via $t \cdot gU := gt^{-1}U$.

⁴[AB] proved it for triangulated categories. [D.G., semi-infinite IC sheaf] generalized it to ∞-categories.

 $_{5}^{\text{Here Maps}}(-,-)$ is the space of morphisms, rather than its enrichment in Vect.

4 K.J.C.

Let $\mathbf{b}^{\lambda}: \mathcal{Z}_{\lambda} \to J_{\lambda}$ be the morphism corresponding to the canonical generator of e. Verify the Plucker conditions and higher compatibilities for \mathbf{b}^{λ} .

(Hint: for (1), nearby-cycle commuting with proper push-forward implies that $\dim \operatorname{Supp}(\mathcal{Z}_{\lambda}) \leq \dim(\operatorname{Gr}_{\lambda}) = \dim(\operatorname{Fl}_{\lambda})$. Combinatorics show that $\operatorname{Fl}_{\lambda}$ is the only *I*-orbit in the preimage of $\operatorname{Gr}_{\lambda}$ such that it dominates $\operatorname{Gr}_{\lambda}$ and has dimension equal to $\dim(\operatorname{Gr}_{\lambda})$. Then one wins by the base-change isomorphisms together with the fact that the push-forward of \mathcal{Z}_{λ} is the Satake sheaf on Gr.

For (2), the Plucker condition is a formal consequence of the fact that the push-forward of \mathcal{Z}_{λ} is the Satake sheaf on Gr. For the higher compatibilities, fortunately all the calculations live in $Shv(Fl)^{I,lc,\heartsuit}$, hence they can be checked in a finite time.)

It remains to show that the Koszul complex associated to the above \mathbf{b}^{λ} vanishes on pt/B . The strategy to do this is as follows. Let fix a total ordering on Λ that extends the usual partial ordering given by positive roots. Suppose we can upgrade the functor (2.2) to a functor $\operatorname{Coh}(\operatorname{pt}/B) \to \operatorname{Shv}(\operatorname{Fl})^{I,lc}$, then it's easy to see \mathcal{Z}_{λ} should be equipped with a unique filtration by Λ whose graded piece is $J_{\mu} \otimes V^{\lambda}(\mu)$, where $V^{\lambda}(\mu)$ is the μ -weight subspace in V^{λ} . Moreover, these filtrations should be compatible with the convolutions in the obvious sense.

Conversely, suppose we already have these filtrations such that the canonical map $\mathcal{Z}_{\lambda} \to \operatorname{gr}^{\lambda}(\mathcal{Z}_{\lambda}) \simeq J_{\lambda}$ is \mathbf{b}^{λ} , then it's easy to verify the desired vanishing property. Hence it remains to construct such filtrations, whose details are actually not covered in this talk. However, let's point out:

- The existence of *some* filtrations on \mathcal{Z}_{λ} by generalized Wakimoto sheaves $(J_{\lambda} \star j_{w,*})$ for $\lambda \in \Lambda, w \in W$ is a formal consequence of the fact that convolution with \mathcal{Z}_{λ} (on both sides) is t-exact.
- The claim that only the Wakimoto sheaves J_{λ} appear in the above filtration is a formal consequence of the fact \mathcal{Z}_{λ} is central.

Let's also mention that the resulting functor $Coh(pt/\check{B}) \to Shv(Fl)^{I,lc}$ is t-exact.

2.4. Step 3: the monodromy. We want to upgrade the exact and t-exact monoidal functor

$$\mathcal{Z}: \mathrm{Coh}(\mathrm{pt}/\check{G}) \to \mathrm{Shv}(\mathrm{Fl})^{I,lc}$$

to an exact monoidal functor out of $\operatorname{Coh}(\check{\mathfrak{g}}/\check{G})$.

Exercise 2.4.1. Construct a canonical symmetric monoidal endomorphism \mathbf{N} on the pullback functor $\operatorname{Coh}(\operatorname{pt}/\check{G}) \to \operatorname{Coh}(\check{\mathfrak{g}}/\check{G})$ such that on the level of objects, the corresponding endomorphism $\mathbf{N}_V \in \operatorname{End}_{\mathcal{O}_{\check{\mathfrak{g}}} - \operatorname{mod}(\operatorname{Rep}(\check{G}))}(\mathcal{O}_{\check{\mathfrak{g}}} \otimes V) \simeq \operatorname{Maps}_{\operatorname{Rep}(\check{G})}(V, \mathcal{O}_{\check{\mathfrak{g}}} \otimes V)$ corresponds to the usual action of the Lie algebra $\check{\mathfrak{g}}$ on $V \in \operatorname{Rep}(G)$.

The above exercise suggests that we should at least construct a monoidal endomorphism $\mathbf{N}: \mathcal{Z} \to \mathcal{Z}$ satisfying certain higher compatibilities with the commutativity constraints for the central sheaves. It turns out the above data is also sufficient.⁶

Recall \mathcal{Z} is constructed via nearby-cycles. It's known that the monodromy on these nearby-cycles is unipotent. In particular, the logarithm of monodromy is well-defined, and is an endomorphism \mathbf{N} on the functor \mathcal{Z} .

Exercise 2.4.2. Using the Kunneth equivalences on nearby-cycles to show that N can be upgraded to a monoidal endomorphism satisfying all the desired properties.

Therefore we obtained the desired exact monoidal functor

$$\operatorname{Coh}(\check{\mathfrak{g}}/\check{G}) \to \operatorname{Shv}(\operatorname{Fl})^{I,lc}.$$

 $^{^6}$ We actually don't know how to show this for ∞-categories. Note that although one starts from a t-exact functor \mathcal{Z} , the resulting extension will not be t-exact.

2.5. Step 4: the vanishing data. Note that we have a Cartesian square

Some formal nonsense allows us to glue step 2 and step 3 to an exact monoidal functor

$$\operatorname{Coh}(\check{G}\backslash(\check{G}/\check{U}\times\check{\mathfrak{g}})/\check{T})\to\operatorname{Shv}(\operatorname{Fl})^{I,lc}.$$

Exercise 2.5.1. (1) Giving a factorization of the above functor through $Coh(\check{G}\backslash \widetilde{\tilde{N}})$ is equivalent to showing that $\mathbf{b}_{\lambda} \circ \mathbf{N}_{\mathcal{Z}_{\lambda}} \simeq 0$.

(2) Check
$$\mathbf{b}_{\lambda} \circ \mathbf{N}_{\mathcal{Z}_{\lambda}} \simeq 0$$
.

(Hint: (1) is more or less by definition. (2) reflects the fact that $\mathbf{N}_{\mathcal{Z}_{\lambda}}$ is nilpotent.)

We finished the construction of Φ_{diag} . Let's explain why it is right t-exact. Indeed, $\text{Coh}(\check{G}\backslash \widetilde{\tilde{N}})$ is the derived category of its heart, and every object in $\text{Coh}(\check{G}\backslash \widetilde{\tilde{N}})^{\heartsuit}$ has a resolution by objects obtained by pullback from $\check{G}\backslash \text{pt}$. Then we win because the images of Φ_{diag} to these objects are contained in the heart.

3. The Iwahori-Whittaker category