
NOTES ON [AB] (AFFINE FLAGS AND THE DUAL GROUP)

K.J.C.

1. Goals

Let k be an algebraically closed field, over which the reductive group G is defined. Let e be an
algebraically closed field of characteristic 0, over which the the Landlands dual group Ǧ is defined. We
shall consider sheaf theories according the choices of k and e: for an algebro-geometric object Y defined
over k:

• If k = Fp, e = Ql, we can consider Shvl(Y), which is the ind-completion of (non-cocomplete)
DG-category1 of l-adic constructible sheaves on Y.

• If k = C, e = C, we can consider DMod(Y).
• If k = C, we can consider Shvan(Y), which is the ind-completion of (non-cocomplete) DG-

category of constructible sheaves with coefficient e for the analytic topology on Yan.

We shall just write Shv for any of the above cases.

The first goal of this talk is to construct an exact (commuting with finite colimits and limits in the
∞-categorical sense) monoidal functor

Φdiag : Coh(ň/B̌)→ Shv(Fl)I,lc,

where the Shv(Fl)I,lc is the full subcategory of Shv(Fl)I consisting of objects whose image in Shv(Fl)
is compact (i.e. locally compact). It’s known that the canonical involution on Shv(Fl)I fixes this full
subcategory. It’s also known that the convolution preserves this full subcategory. The ind-completion
of Shv(Fl)I,lc is denoted by Shv(Fl)Iren, whose difference with Shv(Fl)I is supported at cohomological
degree of −∞.

We warn that Φdiag is not t-exact.

Note that ň/B̌ ' ˜̌
N/Ǧ, and we have a diagonal embedding ˜̌

N/Ǧ ↪→ StǦ. The above Φdiag will be
the restriction of the desired equivalence

Φ : Coh(StǦ /Ǧ) ' Shv(Fl)I,lc

along the diagonal embedding ˜̌
N ↪→ StǦ. We warn that here StǦ is the derived Steinberg variety.

The second goal of this talk is to describe an equivalence

Coh(ň/B̌) ' Shv(Fl)(I−u ,χ),lc

compatible with the monoidal action of Coh(ň/B̌) on both sides. Here I− is the opposite Iwahori, and

I−µ is its unipotent radical. χ : I− → N− → Ga is the generic character, and Shv(Fl)(I−u ,χ) is the full

subcategory of Shv(Fl) consisting of objects which are equivariant for I−u against the character χ. The
Coh(ň/B̌)-action on LHS is given by tensor product, while its action on RHS is induced by Φdiag and
the convolution action.

Shv(Fl)(I−u ,χ),lc is known as the Iwahori-Whittaker category. It’s also called anti-spherical category
because its de-categorify is the anti-spherical representation of the Iwahori-Hecke algebra.

We warn that the above equivalence is only right t-exact. In fact, the canonical t-structure on RHS
corresponds to the exotic t-structure on LHS developed by R.B.

1I admit that I didn’t check whether all the results in [AB] on triangulated categories can be generalized to ∞-
categories. Therefore I refused to sign my real name.
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2. Construction of Φdiag

2.1. The plan. Recall we have a closed embedding ˜̌
N ↪→ Ǧ/B̌ × ǧ. Hence in order to construct Φdiag,

it’s enough to first construct an exact monoidal functor out of the category Coh(Ǧ\(Ǧ/B̌ × ǧ)) and
then provide certain vanishing data. This can be further separated into steps

• Step 1: Construct an exact monoidal functor out of Coh(pt/Ť );
• Step 2: Upgrade the above functor to an exact monoidal functor out of Coh(pt/B̌);
• Step 3: Construct an exact monoidal functor out of Coh(Ǧ\ǧ);
• Step 4: Combining the above functors to an exact monoidal functor Coh(Ǧ\(Ǧ/B̌ × ǧ)) and

factors it through Coh(Ǧ\ ˜̌N).

The construction in step 1 is given by the Wakimoto sheaves; that in step 2 uses the central sheaves and
their filtrations by Wakimoto sheaves; that in step 3 uses the central sheaves and their monodromy;
that in step 4 is provided by certain vanishing property of the monodromy on the graded piece of the
central sheaves.

2.2. Step 1: the Wakimoto sheaves. The first step is to construct the functor

Coh(pt/Ť )→ Shv(Fl)I,lc.

For each coweight λ ∈ Λ of T , we need to construct an object Jλ in Shv(Fl)I,lc and isomorphisms
Jλ ? Jµ ' Jλ+µ with higher compatibilities.

Recall as a set I\G(K)/I ' W aff , where W aff is the extended affine Weyl group (i.e. we have
0→ Λ→W aff →W → 1). For each w ∈W aff , consider the corresponding orbit Flw, which is smooth
of dimension l(w), where l(w) is the length of w. Define j!,w and j∗,w respectively to be the !-extension
and ∗-extension of the IC-sheaf on Flw to Fl, viewed as objects in Shv(Fl)I,lc.

Exercise 2.2.1. 2 (1) jw,∗, jw,! is contained in Shv(Fl)I,lc,♥.
(2) jw1,! ? jw2,∗ and jw1,∗ ? jw2,! are contained in Shv(Fl)I,lc,♥.
(3) If l(w1w2) = l(w1)l(w2), then there are canonical isomorphisms jw1,∗ ? jw2,∗ ' jw1w2,∗ and

jw1,! ? jw2,! ' jw1w2,! satisfy higher compatibilies.
(4) jw,∗ ? jw−1,! ' δe ' jw,! ? jw−1,∗.

(Hints: For (1), one needs the fact that Flw ↪→ Fl is an affine locally closed embedding. For (2), one
needs Flw1 ×̃Fl → Fl and Fl ×̃Flw2 → Fl are both affine. For (3), one needs Flw1 ×̃Flw2 ' Flw1w2 .
Also, in an abelian category, higher compatibilities can be checked in finite time. For (4), do induction
on l(w). When l(w) = 1, do direct calculation on P1×̃P1.)

It’s known l : W → Z is additive when restricted to the dominant coweight lattice Λ+. Hence
the following assignment is well-defined: Jλ := jλ,∗ when λ ∈ Λ+; Jλ := jλ,! when −λ ∈ Λ+; and
Jλ := j−µ1,! ? jµ2,∗ when λ = µ2 − µ1 with µ1, µ2 ∈ Λ+ (such µ1, µ2 always exist).

By formal nonsense, there exists an unique monoidal exact and t-exact functor

Coh(pt/Ť )→ Shv(Fl)I,lc, eλ 7→ Jλ,

where eλ is the 1-dimensional representation of Ť with character λ.

2.3. Step 2: the Drinfeld-Plucker formalism. Now we want to upgrade the monoidal functor

(2.1) Coh(pt/Ť )→ Shv(Fl)I,lc, eλ 7→ Jλ.

to a monoidal functor
Coh(pt/B̌)→ Shv(Fl)I,lc.

Note that B̌ = Ǧ\(Ǧ/Ǔ)/Ť . Hence it’s enough to provide another monoidal functor Coh(pt/Ǧ) →
Shv(Fl)I,lc, equipped with certain compatibilities with (2.1). Thanks to D.G., we do have an exact and
t-exact monoidal functor (the central sheaf construction)

Z : Coh(pt/Ǧ)→ Shv(Fl)I,lc,

2I believe exercises should never exist in any math writing. Therefore I refused to sign my real name.
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and the classical study on Hecke algebras suggests that it is the pursured functor.

Note that Z can be upgraded to an E2-functor from Coh(pt/Ǧ) to the Drinfeld center of Shv(Fl)Iren.
Informally, this means we have functorial isomorphisms Z(V ) ?F ' F ?Z(V ) satisfying higher compat-
ibilities. This additional structure on Z allows one to define an exact and t-exact monoidal functor

(2.2) Coh(Ǧ\pt/Ť )→ Shv(Fl)I,lc, (V, λ) 7→ Z(V ) ? Jλ.

Let F : Coh(Ǧ\pt/Ť ) → C be an exact monoidal functor. It remains to spell out the required
(addition data of) compatibilities to upgrade it to an exact monoidal functor Coh(pt/B̌) → C, which
is just some formal nonsense, and then provide them for (2.2), which is some geometry representation
theory. The formal nonsense is known as the Drinfeld-Plucker formalism, which we describe below.

In practice, it is easier to first extend F to an exact monoidal functor Coh(Ǧ\Ǧ/Ǔ/Ť ), where Ǧ/Ǔ
is the affine closure of Ǧ/Ǔ , and then verify that the result factors through Coh(Ǧ\(Ǧ/Ǔ)/Ť ). Note
that such a factorization is a property rather than additional data.

Exercise 2.3.1. (1) Let V λ be the highest weight module of Ǧ. Then as commutative algebra objects
in Rep(Ǧ× Ť ), we have3

O
Ǧ/Ǔ
'

⊕
Λ+

V λ ⊗ e−λ,

where the multiplication is given by

(V λ ⊗ e−λ)⊗ (V µ ⊗ e−µ) ' (V λ ⊗ V µ)⊗ e−λ−µ → V λ+µ ⊗ e−λ−µ.

(2) For λ ∈ Λ+, write Vλ for the image of V λ under the pullback along Ǧ\Ǧ/Ǔ/Ť → Ǧ\pt, and Lλ

for the image of eλ under the pullback along Ǧ\Ǧ/Ǔ/Ť → pt/Ť . Check that the canonical morphisms

bλ : Vλ '
⊕
µ∈Λ+

(V λ ⊗ V µ)⊗ e−µ →
⊕
µ∈Λ+

(V λ+µ)⊗ e−µ →
⊕
µ∈Λ+

V µ ⊗ e−µ+λ ' L
λ

satisfying the Plucker condition

Vλ+µ //

bλ+µ��

Vλ ⊗ Vµ

bλ⊗bµ��
Lλ+µ ' // Lλ ⊗ Lµ

and higher compatibilities.
(3) Let d(λ) = dim(V λ). Show that the Koszul complex associated to bλ:

0→ ∧d(λ)
V
λ → ∧d(λ)−1

V
λ ⊗ L

λ → · · · → V
λ ⊗ L

(d(λ)−1)λ → L
d(λ)λ → 0

vanishes when restricted to the open Ǧ\(Ǧ/Ǔ)/Ť .

By the exercise, in order to extend F to an exact monoidal functor Coh(Ǧ\Ǧ/Ǔ/Ť ) → C, we at
least need to construct morphisms bλ : F (V λ)→ F (eλ) satisfying Plucker conditions and certain higher
compatibilities. If we want this extension to factor through Coh(pt/B), we at least need to check that
the Koszul complexes associated to the above bλ vanish.

It turns out that the above necessary data and conditions are also sufficient4. It remains to provide
them for our functor (2.2).

Exercise 2.3.2. For λ ∈ Λ+, write Zλ for Z(V λ).
(1) As objects in Shv(Flλ)I,lc, we have a canonical isomorphism

j∗λ(Zλ) ' ICFlλ .

(2) By (1), we have a canonical isomorphism between spaces5

MapsShv(Fl)I,lc(Zλ, Jλ) ' e.

3The negative sign comes from the convention that T acts leftly on G/U via t · gU := gt−1U .
4[AB] proved it for triangulated categories. [D.G., semi-infinite IC sheaf] generalized it to ∞-categories.
5Here Maps(−,−) is the space of morphisms, rather than its enrichment in Vect.



4 K.J.C.

Let bλ : Zλ → Jλ be the morphism corresponding to the canonical generator of e. Verify the Plucker
conditions and higher compatibilities for bλ.

(Hint: for (1), nearby-cycle commuting with proper push-forward implies that dim Supp(Zλ) ≤
dim(Grλ) = dim(Flλ). Combinatorics show that Flλ is the only I-orbit in the preimage of Grλ such
that it dominates Grλ and has dimension equal to dim(Grλ). Then one wins by the base-change
isomorphisms together with the fact that the push-forward of Zλ is the Satake sheaf on Gr.

For (2), the Plucker condition is a formal consequence of the fact that the push-forward of Zλ is the
Satake sheaf on Gr. For the higher compatibilities, fortunately all the calculations live in Shv(Fl)I,lc,♥,
hence they can be checked in a finite time.)

It remains to show that the Koszul complex associated to the above bλ vanishes on pt/B. The
strategy to do this is as follows. Let fix a total ordering on Λ that extends the usual partial ordering given
by positive roots. Suppose we can upgrade the functor (2.2) to a functor Coh(pt/B)→ Shv(Fl)I,lc, then
it’s easy to see Zλ should be equipped with a unique filtration by Λ whose graded piece is Jµ ⊗ V λ(µ),
where V λ(µ) is the µ-weight subspace in V λ. Moreover, these filtrations should be compatible with
the convolutions in the obvious sense.

Conversely, suppose we already have these filtrations such that the canonical map Zλ → grλ(Zλ) '
Jλ is bλ, then it’s easy to verify the desired vanishing property. Hence it remains to construct such
filtrations, whose details are actually not covered in this talk. However, let’s point out:

• The existence of some filtrations on Zλ by generalized Wakimoto sheaves (Jλ ? jw,∗ for λ ∈
Λ, w ∈ W ) is a formal consequence of the fact that convolution with Zλ (on both sides) is
t-exact.

• The claim that only the Wakimoto sheaves Jλ appear in the above filtration is a formal con-
sequence of the fact Zλ is central.

Let’s also mention that the resulting functor Coh(pt/B̌)→ Shv(Fl)I,lc is t-exact.

2.4. Step 3: the monodromy. We want to upgrade the exact and t-exact monoidal functor

Z : Coh(pt/Ǧ)→ Shv(Fl)I,lc

to an exact monoidal functor out of Coh(ǧ/Ǧ).

Exercise 2.4.1. Construct a canonical symmetric monoidal endomorphism N on the pullback functor
Coh(pt/Ǧ) → Coh(ǧ/Ǧ) such that on the level of objects, the corresponding endomorphism NV ∈
EndOǧ -mod(Rep(Ǧ))(Oǧ⊗V ) ' MapsRep(Ǧ)(V,Oǧ⊗V ) corresponds to the usual action of the Lie algebra

ǧ on V ∈ Rep(G).

The above exercise suggests that we should at least construct a monoidal endomorphism N : Z→ Z

satisfying certain higher compatibilities with the commutativity constraints for the central sheaves. It
turns out the above data is also sufficient.6

Recall Z is constructed via nearby-cycles. It’s known that the monodromy on these nearby-cycles is
unipotent. In particular, the logarithm of monodromy is well-defined, and is an endomorphism N on
the functor Z.

Exercise 2.4.2. Using the Kunneth equivalences on nearby-cycles to show that N can be upgraded to
a monoidal endomorphism satisfying all the desired properties.

Therefore we obtained the desired exact monoidal functor

Coh(ǧ/Ǧ)→ Shv(Fl)I,lc.

6We actually don’t know how to show this for ∞-categories. Note that although one starts from a t-exact functor
Z, the resulting extension will not be t-exact.
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2.5. Step 4: the vanishing data. Note that we have a Cartesian square

Ǧ\(Ǧ/Ǔ × ǧ)/Ť //

��

Ǧ\(Ǧ/Ǔ)/Ť

��
Ǧ\g // Ǧ\pt.

Some formal nonsense allows us to glue step 2 and step 3 to an exact monoidal functor

Coh(Ǧ\(Ǧ/Ǔ × ǧ)/Ť )→ Shv(Fl)I,lc.

Exercise 2.5.1. (1) Giving a factorization of the above functor through Coh(Ǧ\ ˜̌N) is equivalent to
showing that bλ ◦NZλ ' 0.

(2) Check bλ ◦NZλ ' 0.

(Hint: (1) is more or less by definition. (2) reflects the fact that NZλ is nilpotent.)

We finished the construction of Φdiag. Let’s explain why it is right t-exact. Indeed, Coh(Ǧ\ ˜̌N) is

the derived category of its heart, and every object in Coh(Ǧ\ ˜̌N)♥ has a resolution by objects obtained
by pullback from Ǧ\pt. Then we win because the images of Φdiag to these objects are contained in the
heart.

3. The Iwahori-Whittaker category
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