
1 Overview Talk by David Yang (Sep 17)

For this talk, G = GLn, B are the upper triangular matrices, N are the strictly upper triangular ones. Let’s
work over C for now. Consider G(Fq). How can we produce representations? One way is via induction:

V := IndG
B(Fq)C ' C⊗C[B] C[G]

then dim(V ) =
|G|
|B|
∼ q!

n2−n
2 . Let V =

⊕
irrep

V ⊕ni
i , then End(V ) '

⊕
End(Vi). That is, the Vi are classified

by representations of End(V ).
Let H := End(V ). Then irrep W of H yields irrep V ⊗H W of G(Fq). This generates some positive

proportions of the irreps. In fact, H lies in a family Hq (q for any complex number, becomes the previous
case when q is the size of Fq), where H1 is the group algebra of Sn =: W . Hq has the same representation
theory as H1 for q not a root of unity. Also, (more to come later), End(V ) is the convolution algebra of
functions on B\G/B.

Now let’s try to do the same for infinite-dimensional cases, i.e. p-adic groups, case of G(Qp).
Complex representations of G(Qp): why do we care? If you are a number theorist then there’s local

Langlands, which compares such with n-dimensional Galois reps (of Gal(Qp/Qp).

Let’s try to induce. Consider G(Zp). So fix V = Ind
G(Qp)

G(Zp)C. Then End(V ) = C[G(Zp)\G(Qp)/G(Zp)].

Let C[G(Qp)] denote the algebra of compactly supported locally constant functions on G(Qp). (Note the
lack of unit.) Reps of G(Qp) are reps of this algebra. Multiplication is given by convolution:

f ∗ g(x) =

∫
f(x/y)g(y)dy

There’s a specific element e inside the group algebra which is 1 on G(Zp) and 0 everywhere else. (From now
on K = Qp, O = Zp.)

Exercise 1. Show this is compactly supported and locally constant.

Proposition 1. e2 = e under correct normalization.

Let V = C[G(Qp)]e. Then End(V ) = eC[G(K)]e, the ring of bi-G(O)-invariant functions on G(K).

Proposition 2. This is the same as K0(Rep(GLn)) ' C[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Sn . (Note this is commu-
tative! Compare with the finite-dimensional case.)

Let’s denote this by H. Then reps of G(Qp) appearing in this particular representation are in bijections
of reps of H i.e. maximal ideals in H. Note that also H = C(GLn//adjointGLn). (This is the Hecke
compatibility.)

What about Iwahori I, i.e. the preimage of B via G(O) → G(Fp)? Again we take V = Ind
G(K)
I C, let

H = End(V ). Want to understand representation theory of H.

Exercise 2. For GL2, show that G(O)\G(K)/G(O) are exactly these ones: G(O)

(
pa 0

0 pb

)
G(O), a ≥ b.

This is analogous to the KAK decomposition for real groups.

Exercise 3. On the other hand, show that I\G(K)/I are exactly these ones: I

(
pa 0

0 pb

)
I and I

(
0 pa

pb 0

)
I.

Reductive groups are, we remind, classified by root systems. There are extensions of them, those with
infinitely many roots. (Examples drawn on board.) To define such a thing you want to fix a symmetric
bilinear form. Note you don’t actually need the entire thing to be non-degenerate. For SL2(K), the bilinear
form is

〈(a, b), (c, d)〉 := ac

One can check that each root still defines a reflection. This is the root system Â1.

1



What is the subgroup I in this context? It’s everything above the line of slope −1/2 + ε. (Picture drawn

on board.) For SL2, it’s

(
a b
c d

)
for a, b, d ∈ G(O), c ∈ pG(O).

We have the Iwahori decomposition:

G(K) '
⊔

w∈W aff

IwI

where W aff is the affine Weyl group. Alternatively, it’s given by the semi-direct product of the cocharacter
lattice by the finie Weyl group. H again lies in a family Hq, q any complex number, where H1 is C[W aff].

Let Ǧ be the Langlands dual, which is also GLn. Let B̌ = Ǧ/B̌ be the flag variety.

Proposition 3. We have C[G(O)\G(K)/G(O)] ' K0(Rep(Ǧ)) ' KǦ
0 (pt).

Let Ň be the variety of nilpotent elements in ǧ.

Proposition 4 (Springer Resolution). Consider T ∗B̌, which is the collection of a borel along with an element
in its nilradical. The map π : T ∗B̌ → Ň is a birational equivaence, Ǧ-equivariant, and semi-small, and a
crepant resolution of singularities.

Define Št = T ∗B̌ ×Ň T ∗B̌.

Theorem 1.1 (Kazhdan-Lusztig). Let H̃ = KǦ×C×
0 (Št), then it’s acted on by KC×

0 (pt) ' C[x]. (This action
is on fibers.) Then H = C[I\G(K)/I] ' H̃ ⊗C[x] C[x]/(x− p).

Sanity check on size. Fact: Št has |Sn| = n! irreducible components. One of them is the cotangent itself.

KǦ
0 (T ∗B̌) = K0Ǧ(B̌) = KB̌

0 (pt) = K Ť
0 (pt) = K0(Rep(Ť )) = C[Zrank(T )].

This is a hard theorem but will fall out of the study during this seminar.

Application Here’s one application: classification of irreps of H (Deligne-Langlands correspondence). For

any element n ∈ Ň , let Bn := T ∗B̌×Ň {n}. Then you have commuting actions of KǦ×C×
0 (St) and KǦ×C×

0 (pt)

on KǦ×C×
0 (Bn). Then any character on RHS immediately gives reps of LHS by tensoring. Claim: this gives

all irreps.

Now we categorify. For G(O) case, natural outcome is the following:

Shv(G(O)\G(K)/G(O)) ' Rep(Ǧ)

This is geometric Satake (in the abelian case). What about the I case?

Shv(I\G(K)/I) ' IndCohǦ(Št)

(This only holds derivedly, in contrary to the above.)

Application to modular rep theory Take GLn as an algebraic group over Fq. Can consider some
special reps, e.g. reps reduced from Z. These are not irreducible (in general), so what are the irreps and
their characters? Equivalently, what are the transition matrix?

First hint: what are the blocks? Answer: blocks are affine Weyl orbits. Example: SL3 (character lattice
drawn). Then the irreps that can appear are those with highest weight in the W aff-orbit. Second hint: the
multiplicies [Vx : Wx′ ] are values of (periodic) KL-polynomials (only true if x, x′ are small enough compared
to p2).

How to prove? Originally: Anderson-Jantzen-Soergel via the Lusztig triangle: (modular) to (quantum

groups at roots of unity) to (affine). New proof: links all three to DbCohǦ(T ∗B). To affine: Roman’s thing.
To modular: reps of G/Fq corresponds to that of g/Fq. Now use BB localization (BMR version: for large
p, using derived categories, using crystalline differential operators). Precise statement: exists an Azumaya
algebra A on T ∗X such that Dcrys

X = π∗A. So imparticular, Dcrys(B) ' A-mod(T ∗X). Theorem (BMR): A
splits on formal neighborhood of Springer fibers. Remark: choosing a Springer fiber is the same as choosing
a Frobenius character of g. (To quantum: ABG.)

To finish the job we need to identify the t-structures. This is where the exotic coherent / perverse
t-structures come in.
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